

Master PowerShell tricks
Volume 1

Dave Kawula - MVP
Thomas Rayner - MVP

Sean Kearney - MVP
Allan Rafuse - MVP

Ed Wilson – The Scripting Guy

PUBLISHED BY
MVPDays Publishing
http://www.mvpdays.com

Copyright © 2016 by MVPDays Publishing
All rights reserved. No part of this lab manual may be reproduced or transmitted in any form or by
any means without the prior written permission of the publisher.
ISBN: 978-1541092839

Warning and Disclaimer

Every effort has been made to make this manual as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The authors and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Feedback Information

We’d like to hear from you! If you have any comments about how we could improve the quality
of this book, please don’t hesitate to contact us by visiting www.mvpdays.com or sending an
email to feedback@mvpdays.com.

Foreword Ed Wilson “The Scripting Guy”

iii

Foreword Ed Wilson “The
Scripting Guy”

There are many cool things about Windows PowerShell. For me three of the most
awesome things are the following:

1. If you don’t like the way Windows PowerShell does things, you can change it.

2. If Windows PowerShell can’t do something you need, you can add it.

3. The Windows PowerShell community is super dedicated, and will help you do both one
and two.

Now, to be honest at times, it is necessary to write hundreds and hundreds of lines of
arcane code, to dive into the deepest and darkest mysteries of programing, and even to
learn about things like API’s, Constructors, Events, threading, ACL’s, DACL’s, CACL’s
and maybe even Tetradactylies. Then again, most of the time it is not. In fact, it has been
years and years since I wrote a hundreds and hundreds of lines of arcane code.

It is almost as if the Windows PowerShell team deliberately tried to make Windows
PowerShell easy to use and easy to learn. Hmm … I wonder if that approach would ever
catch on? Anyway, there used to be an old saw: “Ease of use is directly opposed to
program capability.” Or, in other words, if it is easy to use, it probably is not all that
powerful. Well, PowerShell changes that … dramatically.

And yet, Windows PowerShell is also deceptively easy to use. One can go from Get-
Service and Get-Process or even Get-Date to some pretty complicated stuff in like one
line of code.

This is why item number three is so important. The authors of this book: Dave, Sean,
Thomas and Allan are all Windows PowerShell experts, and have even been recognized
by Microsoft as community leaders. So, this means not only do they know their stuff, but
they are also great at sharing that knowledge with the community. Sean Kearney is even
an Honorary Scripting Guy – a very elite group indeed!

Foreword Ed Wilson “The Scripting Guy”

iv

One of the great way that MVP’s share their knowledge and experience is via MVP Days
a traveling road show that was started by Dave and Cristal Kawula. This is a very well run
event, and I have had the opportunity to speak at two of the events … it is cool, and it is
fun.

So grab this book, get it autographed, and learn how to master some awesome PowerShell
tricks. It is cool.

Ed Wilson

Microsoft Scripting Guy

@ScriptingGuys

Acknowledgements

v

Acknowledgements

From Dave
Cristal, you are my rock and my source of inspiration. For the past 20 + years you have been
there with me every step of the way. Not only are you the “BEST Wife” in the world you are my
partner in crime. Christian, Trinity, Keira, Serena, Mickaila and Mackenzie, you kids are so
patient with your dear old dad when he locks himself away in the office for yet another book.
Taking the time to watch you grow in life, sports, and become little leaders of this new world is
incredible to watch.

Thank you, Mom and Dad (Frank and Audry) and my brother Joe. You got me started in this
crazy IT world when I was so young. Brother, you mentored me along the way both coaching me
in hockey and helping me learn what you knew about PC’s and Servers. I’ll never forget us as
teenage kids working the IT Support contract for the local municipal government. Remember
dad had to drive us to site because you weren’t old enough to drive ourselves yet. A great career
starts with the support of your family and I’m so lucky because I have all the support one could
ever want.

A book like this filled with amazing Canadian MVP’s would not be possible without the support
from the #1 Microsoft Community Program Manager – Simran Chaudry. You have guided us
along the path and helped us to get better at what we do every day. Your job is tireless and your
passion and commitment make us want to do what we do even more.

Last but not least, the MVPDays volunteers, you have donated your time and expertise and helped
us run the event in over 20 cities across North America. Our latest journey has us expanding the
conference worldwide as a virtual conference. For those of you that will read this book your
potential is limitless just expand your horizons and you never know where life will take you.

About the Authors

vi

About the Authors

Dave Kawula - MVP
Dave is a Microsoft Most Valuable Professional (MVP) with over 20 years of experience in the IT
industry. His background includes data communications networks within multi-server
environments, and he has led architecture teams for virtualization, System Center, Exchange,
Active Directory, and Internet gateways. Very active within the Microsoft technical and
consulting teams, Dave has provided deep-dive technical knowledge and subject matter expertise
on various System Center and operating system topics.

Dave is well-known in the community as an evangelist for Microsoft, 1E, and Veeam
technologies. Locating Dave is easy as he speaks at several conferences and sessions each year,
including TechEd, Ignite, MVP Days Community Roadshow, and VeeamOn.

Recently Dave has been honored to take on the role of Conference Co-Chair of TechMentor with
fellow MVP Sami Laiho. The lineup of speakers and attendees that have been to this conference
over the past 20 years is really amazing. Come down to Redmond or Orlando in 2018 and you
can meet him in person.

As the founder and Managing Principal Consultant at TriCon Elite Consulting, Dave is a leading
technology expert for both local customers and large international enterprises, providing optimal
guidance and methodologies to achieve and maintain an efficient infrastructure.

BLOG: www.checkyourlogs.net

Twitter: @DaveKawula

About the Authors

vii

Sean Kearney - MVP
$PowerShellMVPBio=@'
"A long time ago in a Cmdlet far far away... there was this guy, who sang about PowerShell"
Here is a person who genuinely loves his job and smiles he gets paid to do what he loves, It's
PowerShell MVP Sean Kearney
Presently working for a Microsoft Gold Partner in Ottawa as a Senior Solutions Architect, he lives
each and every day for an opportunity to show someone and easier and more consistent way to do
their job with Windows
PowerShell.

BLOG: http://www.energizedtech.com/

Twitter: @energizedtech

Thomas Rayner - MVP
Thomas Rayner is an information technology, entrepreneurship and leadership enthusiast with a
penchant for Microsoft tools and products. Thomas is a proud graduate of several programs at
NAIT, an institution that he remains actively connected to. He works on the DevOps and
Automation team at PCL Construction.

BLOG: http://workingsysadmin.com

Twitter: @mrthomasrayner

Allan Rafuse – MVP
Allan has worked as a senior member of the Windows and VMWare Platform Department at
Swedbank. He took part in the architecture and implementation of multiple datacenters in several
countries. He is responsible for the roadmap and lifecycle of the Windows Server Environment,

About the Authors

viii

including the development of ITIL processes of global server OSD, configuration, and
performance.

He is an expert at scripting solutions and has an uncanny ability to reduce complexity and
maximize the functionality of PowerShell. Allan has recently rejoined the TriCon Elite Consulting
team again as a Principal Consultant.

BLOG: http://www.checkyourlogs.net

Twitter: @allanrafuse

Ed Wilson – The Scripting Guy
Ed Wilson is a well-known scripting expert. He is a Microsoft Certified Trainer who has delivered
a popular Windows PowerShell workshop to Microsoft Premier customers worldwide. Ed has
written six books on Microsoft Windows scripting for Microsoft Press. His three Windows
PowerShell books are Windows PowerShell 2.0 Best Practices, Windows PowerShell Scripting
Guide, and Microsoft Windows PowerShell Step by Step. He has also written or contributed to
almost a dozen other books. Ed holds more than 20 industry certifications, including Microsoft
Certified Systems Engineer (MCSE) and Certified Information Systems Security Professional
(CISSP). Before coming to work for Microsoft, Ed was a senior consultant for a Microsoft Gold
Certified Partner where he specialized in Active Directory design and Exchange Server
implementation. Ed and the “Scripting Wife” Teresa live in South Carolina. In his spare time, he
enjoys woodworking, underwater photography, and scuba diving. And tea.

BLOG: https://blogs.technet.microsoft.com/heyscriptingguy/
Twitter: @scriptingguys

About the Authors

ix

Technical Editors

Cristal Kawula – MVP
Cristal Kawula is the co-founder of MVPDays Community Roadshow and #MVPHour live
Twitter Chat. She was also a member of the Gridstore Technical Advisory board and is the
President of TriCon Elite Consulting. Cristal is also only the 2nd Woman in the world to receive
the prestigious Veeam Vanguard award.

Cristal can be found speaking at Microsoft Ignite, MVPDays, and other local user groups. She is
extremely active in the community and has recently helped publish a book for other Women
MVP’s called Voices from the Data Platform.

BLOG: http://www.checkyourlogs.net

Twitter: @supercristal1

Emile Cabot - MVP
Emile started in the industry during the mid-90s working at an ISP and designing celebrity web
sites. He has a strong operational background specializing in Systems Management and
collaboration solutions, and has spent many years performing infrastructure analyses and solution
implementations for organizations ranging from 20 to over 200,000 employees. Coupling his
wealth of experience with a small partner network, Emile works very closely with TriCon Elite,
1E, and Veeam to deliver low-cost solutions with minimal infrastructure requirements.

He actively volunteers as a member of the Canadian Ski Patrol, providing over 250 hours each
year for first aid services and public education at Castle Mountain Resort and in the community.

BLOG: http://www.checkyourlogs.net

Twitter: @ecabot

About the Authors

x

Contents

xi

Contents

Foreword Ed Wilson “The Scripting Guy” .. iii

Acknowledgements ... v
From Dave .. v

About the Authors .. vi
Dave Kawula - MVP .. vi
Sean Kearney - MVP ... vii
Thomas Rayner - MVP .. vii
Allan Rafuse – MVP ... vii
Ed Wilson – The Scripting Guy ... viii
Technical Editors .. ix

Cristal Kawula – MVP ... ix
Emile Cabot - MVP ... ix

Contents .. xi

Introduction ... 1
North American MVPDays Community Roadshow .. 1
Structure of the Book .. 1
Sample Files ... 2
Additional Resources .. 3

Chapter 1 .. 5

Simulating a Ransomware Attack with PowerShell .. 5
But how does one test for Ransomware detection? .. 5
The Code .. 6

Chapter 2 .. 8

Retrieving the Distribution Lists a User is a Member Of .. 8
The Code .. 9

Chapter 3 .. 10

Contents

xii

Identifying Large Exchange Mailbox Folders via PowerShell 10
The Code .. 11

Chapter 4 .. 14

Deploying a Domain Joined Nano Server via PowerShell .. 14
PowerShell Cmdlets for the Network Stack ... 15

Chapter 5 .. 19

Enabling Auto Notification of Specific File Changes .. 19
The Code ... 19

Chapter 6 .. 21

Copying the Output of the last PowerShell command to the clipboard 21
The Code .. 21

Chapter 7 .. 23

Validate the Length of An Integer ... 23
The Code ... 23

Chapter 8 .. 24

Allow a Null Value for An Object That Doesn’t Normally Allow it 24

Chapter 9 .. 25

Getting Started with Pester ... 25

Chapter 10 .. 29

Find missing Subnets in AD Sites and Services ... 29
Cloud Environments ... 29
Solution .. 29
Things to thing about .. 30
The Code ... 30

Chapter 11 .. 32

Copy Directories/Files to a list of Remote Computers .. 32
Here-Strings to the Rescue ... 33

Chapter 12 .. 36

Contents

xiii

Making the Configuration Manager PowerShell Module Discoverable 36
The Code .. 37

Chapter 13 .. 39

Resolving issues with slow Outbound mail in Office 365 in a Hybrid connection
using a SmartHost or Internal Appliance ... 39

Chapter 14 .. 43

Use PowerShell to Work with Data from OMS ... 43
Parsing MS OMS data with PowerShell .. 43
Importing the CSV file using PowerShell ... 44

Chapter 15 .. 50

Use PowerShell to Explore Office 365 Installation .. 50

Chapter 16 .. 53

PowerShell 5 Classes: Constructor Overloading .. 53
What’s an overload anyway? .. 53
Creating overloaded constructors ... 55

Chapter 17 .. 58

Filtering Event Logs with PowerShell .. 58
Seven parameter sets ... 58

Chapter 18 .. 64

Use the PowerShell 5 Convert-String Cmdlet .. 64
Convert-String ... 64
The old flipty dipty ... 64
Expanding the string idea ... 65

Chapter 19 .. 67

Use PowerShell to Detect if a Location is a Directory or a Symlink 67

Chapter 20 .. 68

Bypassing PowerShell Execution Policy ... 68

Contents

xiv

Chapter 20 .. 70

Starting up and Shutting down a list of VM’s in a specific order 70

Chapter 21 .. 72

Join us at MVPDays and meet great MVP’s like this in person 72
Live Presentations .. 72
Video Training ... 72
Live Instructor-led Classes .. 72
Consulting Services .. 73
Twitter ... 74

Chapter 1 Simulating a Ransomware Attack with PowerShell

1

Introduction

North American MVPDays Community
Roadshow
The purpose of this book is to showcase the amazing expertise of our guest speakers at the North
American MVPDays Community Roadshow. They have so much passion, expertise, and expert
knowledge that it only seemed fitting to write it down in a book.

MVPDays was founded by Cristal and Dave Kawula back in 2013. It started as a simple idea;
“There’s got to be a good way for Microsoft MVPs to reach the IT community and share their vast
knowledge and experience in a fun and engaging way” I mean, what is the point in recognizing
these bright and inspiring individuals, and not leveraging them to inspire the community that they
are a part of.
We often get asked the question “Who should attend MVPDays”?
Anyone that has an interest in technology, is eager to learn, and wants to meet other like-minded
individuals. This Roadshow is not just for Microsoft MVP’s it is for anyone in the IT
Community.

Make sure you check out the MVPDays website at: www.mvpdays.com. You never know maybe
the roadshow will be coming to a city near you.

The goal of this particular book is to give you some amazing Master PowerShell tips from the
experts you come to see in person at the MVPDays Roadshow. Each chapter is broken down into
a unique tip and we really hope you find some immense value in what we have written.

Structure of the Book
The first chapter of this book introduces you to the concepts of HyperConverged infrastructure.

Chapter 1 in this chapter Thomas Rayner shows how to simulate a Ransomware attack using
PowerShell.

Chapter 2 Thomas Rayner shows how to retrieve the distribution list members that a user is a
member of with PowerShell.

Chapter 3 Thomas Rayner demonstrates how to identify large exchange mailbox folders with
PowerShell

Chapters 4 Sean Kearney shows us how to Domain Join a Nano Server with PowerShell.

Introduction

2

Chapter 5 Thomas Rayner shows us how to setup auto notifications for a file that has changed.
This could easily be turned into an email auto notification for a file that gets dropped into a folder
or that is changed.

Chapter 6 Thomas Rayner shows how to copy the last PowerShell command to the clipboard via
PowerShell.

Chapter 7 Thomas Rayner validates the length of an integer with PowerShell.

Chapter 8 Thomas Rayner is back again showing us how to allow a null value for an object that
doesn’t normally allow it.

Chapter 9 Thomas Rayner is back for his final trick showing us how to get starter with Pester.

Chapter 10 Allan Rafuse show us an extremely handy trick to figure out the missing subnets in
Active Directory Sites and Services using PowerShell.

Chapter 11 Allan Rafuse shows us how to Copy Directories or files to a list of remote computers
using PowerShell.

Chapter 12 Sean Kearney is back to show us how to make the Configuration Manager PowerShell
Module Discoverable with this golden master trick.

Chapter 13 Sean Kearney helps us resolve slow outbound mail in Office 365 Hybrid with
PowerShell.

Chapter 14 Ed Wilson shows how to work with Data from OMS using PowerShell

Chapter 15 Ed Wilson helps us to explore our Office 365 installation using PowerShell

Chapter 16 Ed Wilson teaches us about Constructor Overloading

Chapter 17 Ed Wilson shows us a master trick to filter event logs using PowerShell

Chapter 18 Ed Wilson helps us to learn about Convert-String and some cool functionality

Chapter 19 Thomas Rayner show us how to detect if a location is a Directory or a Symbolic Link
using PowerShell

Chapter 20 Thomas Rayner walks us through some better ways to setup Execution Policies with
PowerShell

Chapter 21 Want to meet us in person all the info you need is here.

Sample Files
All sample files for this book can be downloaded from http://www.checkyourlogs.net

Chapter 1 Simulating a Ransomware Attack with PowerShell

3

Additional Resources
In addition to all tips and tricks provided in this book, you can find extra resources like articles
and video recordings on our blog http://www.checkyourlogs.net.

Introduction

4

Chapter 1 Simulating a Ransomware Attack with PowerShell

5

Chapter 1

Simulating a Ransomware
Attack with PowerShell

By: Thomas Rayner – MVP

Ransomware issues have escalated as of late. While there is a common belief that there is no sure-
fire way of guaranteeing your organization will never be hit by a ransomware attack, IT
administrators should be prepared to detect, stop, and recover from it when it strikes.

But how does one test for Ransomware
detection?
While it is ill advised to purposely install ransomware, there are ways to emulate its effects.
Conditions that detection software look for include:

 A user that renames more than 100 files

 A user that modifies more than 100 files

 1 and 2 happen in under 60 seconds

Once the above happens, ransomware will usually encrypt, modify and append the file extension
very quickly.

Introduction

6

Figure 1 – Ransomware is a real threat

Note: Many ransomware variants behave in many different ways. The conditions listed above are
the more common behaviors documented.

The Code
The following PowerShell script can be used to emulate the above conditions within your lab
environment:

$strDir = "C:\temp\test1\"
GCI $strDir | Remove-Item -Force

1..200 | % { $strPath = $strDir + $_ + ".txt"; "something" | Out-File $strPath | Out-Null }
Measure-Command { 1..101 | % { $strPath = $strDir + $_ + ".txt";
$strNewPath = $strPath + ".chng"; "changed" | Out-File -Append $strPath; Rename-Item -Path $strPath -
NewName $strNewPath } }

The breakdown of this script is as follows:
Lines 1, 2 and 3 setup the environment.

Line 1 assigns $strDir with the test directory to be monitored for ransomware attacks

Line 2 empties the test directory which you probably don’t want to do indiscriminately in a
production area but I want to do in my test area

Chapter 1 Simulating a Ransomware Attack with PowerShell

7

Line 3 creates 200 txt files in $strDir. 1..200 is a slick way of writing all the numbers between 1
and 200 inclusive. Try it yourself in a PowerShell console. Then, for each of those numbers, we’re
creating a file and suppressing the output.

Line 4 simulates the ransomware condition. For 101 files, we’re making a variable $strPath which
is an individual file we created in line 3. We’re also crafting a new path stored in $strNewPath
which is the same file but with an extension. Then I’m changing the contents of the file by writing
“changed” inside it. Finally, I rename the file. The whole thing is wrapped in a Measure-
Command block so I can see how long it takes.
During my previous test the ransomware part took 688 milliseconds.

Days : 0
 Hours : 0
 Minutes : 0
 Seconds : 0
 Milliseconds : 688
 Ticks : 6887630
 TotalDays : 7.97179398148148E -06
 TotalHours : 0.000191323055555556
 TotalMinutes : 0.0114793833333333
 TotalSeconds : 0.688763
 TotalMilliseconds : 688.763

Test this in lab for yourself and see if you can detect this simulated ransomware attack.

Chapter 2 Retrieving the Distribution Lists a User is a Member Of

8

Chapter 2

Retrieving the Distribution
Lists a User is a Member Of

By: Thomas Rayner – MVP

Let’s say you have a user and want to get all the distribution lists this user is a member of. Well
the following PowerShell script can help you with that. This can be very handy because
sometimes a user can mistakenly get added to the wrong Distribution List.

Figure 2 – Exchange Distribution List members

Chapter 2 Retrieving the Distribution Lists a User is a Member Of

9

The Code
The following PowerShell script can be used to emulate the above conditions within your lab
environment:

$DN = 'CN=ThmsRynr,OU=BestUsers,DC=lab,DC=workingsysadmin,DC=com'
Get-DistributionGroup -filter "members -eq '$DN'" | Select-Object Name,@ {
l='Members';e={ (Get-DistributionGroupMember $_.SamAccountName -ResultSize Unlimited | % { $_.Name })
-join '; ' } }

Line 1 declares the variable to hold the DistinguishedName attribute for the user of interest. Line 2
competes the grunt work of searching. This gets all the distribution groups which have a member
equal to the DN of the user of interest.

The above script positions the Distribution Groups return into a SelectObject cmdlet to report the
Name property and then a custom column. The label is Members and the content is going to just
be a string of all the Distribution Group members’ names separated by semicolons. The expression
for my custom column is a Get-DistributionGroupMember command for the Distribution Group
piped into a Foreach-Object (alias is “%”) which returns an array of all the names of the members
in the Distribution Group. I use the -join command to take the array and convert it into a string
separated by semicolons.

When Get-DistributionGroup is utilized, you do not get the members of that group back with it.
Here are the properties that come back that contain the string mem in the name.

PS C:\> Get-DistributionGroup -filter "members -eq '$DN'" | Select-Object -First 1 | GetMember |
Where-Object Name -match 'mem' | Select-Object Name

 Name

——

 AcceptMessagesOnlyFromDLMembers

AcceptMessagesOnlyFromSendersOrMembers

AddressListMembership

BypassModerationFromSendersOrMembers

 MemberDepartRestriction

 MemberJoinRestriction

RejectMessagesFromDLMembers

 RejectMessagesFromSendersOrMembers

Nothing in there contains the members and so the initial script provided in this post is utilized.

Chapter 3 Identifying Large Exchange Mailbox Folders via PowerShell

10

Chapter 3

Identifying Large Exchange
Mailbox Folders via
PowerShell

By: Thomas Rayner - MVP

Identifying users with large Exchange mailboxes is a task undertaken by most system
administrators who are in need of freeing up space on their mail servers. While most search for
mailboxes approaching a certain size, I wanted to take this a step further and identify the large
folders within user mailboxes. An example of this would be to find all the users who have a large
Deleted Items folder or Sent Items or Calendar that would be eligible to be cleaned out. It’s made
to be run from a Remote Exchange Management Shell connection instead of by logging into an
Exchange server via remote desktop and running such a shell.

Figure 3 – Large Mailbox Folders

Chapter 3 Identifying Large Exchange Mailbox Folders via PowerShell

11

The Code
Let’s get started by defining the function and parameters

{
 [CmdletBinding()]
 param (
 [Parameter(Mandatory = $False)]
 [ValidateSet('All', 'Calendar', 'Contacts', 'ConversationHistory',
'DeletedItems', 'Drafts', 'Inbox', 'JunkEmail', 'Journal',
'LegacyArchiveJournals', 'ManagedCustomFolder', 'NonIpmRoot', 'Notes', 'Outbox',
'Personal', 'RecoverableItems', 'RssSubscriptions', 'SentItems', 'SyncIssues',
'Tasks')]
 [string]$FolderScope = 'All',
 [Parameter(Mandatory = $False)]
 [int]$Top = 1,
 [Parameter(Mandatory = $False,
 Position = 1,
 ValueFromPipeline = $True)]
 [string]$Identity = '*'
)
}

This function is to be named Get-LargeFolder and takes three parameters.

$FolderScope is used in the Get-MailboxFolderStatistics cmdlet and must belong to the set of
values specified.

$Top is an integer used to define how many results we’re going to return

$Identity can be specified as an individual username to examine a specific mailbox, or left blank
(defaulted to *) to examine the entire organization.

function Get-LargeFolder
{
 [CmdletBinding()]
 param (
 [Parameter(Mandatory = $False)]
 [ValidateSet('All', 'Calendar', 'Contacts', 'ConversationHistory',
'DeletedItems', 'Drafts', 'Inbox', 'JunkEmail', 'Journal',
'LegacyArchiveJournals', 'ManagedCustomFolder', 'NonIpmRoot', 'Notes', 'Outbox',
'Personal', 'RecoverableItems', 'RssSubscriptions', 'SentItems', 'SyncIssues',
'Tasks')]
 [string]$FolderScope = 'All',
 [Parameter(Mandatory = $False)]
 [int]$Top = 1,
 [Parameter(Mandatory = $False,
 Position = 1,
 ValueFromPipeline = $True)]
 [string]$Identity = '*'
)

 Get-Mailbox -Identity $Identity -ResultSize Unlimited |
 Get-MailboxFolderStatistics -FolderScope $FolderScope
}

Chapter 3 Identifying Large Exchange Mailbox Folders via PowerShell

12

Next I’ve added a lines to retrieve all of my organizations mailboxes which I direct the data
stream into a Get-MailboxFolderStatistics command with the FolderScope parameter set to the
same value we passed to our function. Now we need to sort the results.

function Get-LargeFolder
{
 [CmdletBinding()]
 param (
 [Parameter(Mandatory = $False)]
 [ValidateSet('All', 'Calendar', 'Contacts', 'ConversationHistory',
'DeletedItems', 'Drafts', 'Inbox', 'JunkEmail', 'Journal',
'LegacyArchiveJournals', 'ManagedCustomFolder', 'NonIpmRoot', 'Notes', 'Outbox',
'Personal', 'RecoverableItems', 'RssSubscriptions', 'SentItems', 'SyncIssues',
'Tasks')]
 [string]$FolderScope = 'All',
 [Parameter(Mandatory = $False)]
 [int]$Top = 1,
 [Parameter(Mandatory = $False,
 Position = 1,
 ValueFromPipeline = $True)]
 [string]$Identity = '*'
)

 Get-Mailbox -Identity $Identity -ResultSize Unlimited |
 Get-MailboxFolderStatistics -FolderScope $FolderScope |
 Sort-Object -Property @{
 e = {
 $_.FolderSize.split('(').split(' ')[-2].replace(',','') -as [double]
 }
 } -Descending
}

The FolderSize parameter returns with a Get-MailboxFolderStatistics cmdlet which is a string to
be split up to provide only the value in bytes which I am casting to a double. Once the stats have
been gathered and set in order, they need to be selected so they can be returned.

Here is the complete script:

function Get-LargeFolder
{
 [CmdletBinding()]
 param (
 [Parameter(Mandatory = $False)]
 [ValidateSet('All', 'Calendar', 'Contacts', 'ConversationHistory',
'DeletedItems', 'Drafts', 'Inbox', 'JunkEmail', 'Journal',
'LegacyArchiveJournals', 'ManagedCustomFolder', 'NonIpmRoot', 'Notes', 'Outbox',
'Personal', 'RecoverableItems', 'RssSubscriptions', 'SentItems', 'SyncIssues',
'Tasks')]
 [string]$FolderScope = 'All',
 [Parameter(Mandatory = $False)]
 [int]$Top = 1,

Chapter 3 Identifying Large Exchange Mailbox Folders via PowerShell

13

 [Parameter(Mandatory = $False,
 Position = 1,
 ValueFromPipeline = $True)]
 [string]$Identity = '*'
)

 Get-Mailbox -Identity $Identity -ResultSize Unlimited |
 Get-MailboxFolderStatistics -FolderScope $FolderScope |
 Sort-Object -Property @{
 e = {
 $_.FolderSize.split('(').split(' ')[-2].replace(',','') -as [double]
 }
 } -Descending |
 Select-Object -Property @{
 l = 'NameFolder'
 e = {
 $_.Identity.Split('/')[-1]
 }
 },
 @{
 l = 'FolderSize'
 e = {
 $_.FolderSize.split('(').split(' ')[-2].replace(',', '') -as
[double]
 }
 } -First $Top
}

You can now figure out your large mailbox folders by executing the following:

#Get 25 largest Deleted Items folders in your organization
Get-LargeFolder -FolderScope 'DeletedItems' -Top 25

#Get my largest 10 folders
Get-LargeFolder -Identity ThmsRynr -Top 10

#Get the top 25 largest Deleted Items folder for users in a specific group
$arrLargeDelFolders = @()
(Get-ADGroupMember 'GroupName' -Recursive).SamAccountName | ForEach-Object -
Process {
 $arrLargeDelFolders += Get-LargeFolder -FolderScope 'DeletedItems' -Identity
$_
}
$arrLargeDelFolders |
Sort-Object -Property FolderSize -Descending |
Select-Object -Property NameFolder, @{
 l = 'FolderSize (Deleted Items)'
 e = {
 '{0:N0}' -f $_.FolderSize
 }
} -First 25 |
Format-Table -AutoSize

Chapter 4 Deploying a Domain Joined Nano Server via PowerShell

14

Chapter 4

Deploying a Domain Joined
Nano Server via PowerShell

By: Sean Kearney - MVP

Recently I’ve put together a PowerShell module called DeployImage with the intent to simplify
the deployment of a WindowsIMage file. In this case, my goal was to make NanoServer an easily
deployable option for the average system administrator. So began my experimentation with
Windows Server 2016 to get a fully deployed Nano server online.

Deploying Nano Server is no different than deploying any other WIM file except for the fact that
you must compensate for is it is headless environment.

Figure 4 – Nano Server

This requires a plan to have certain tasks completed within the server without actually touching it.
These tasks include:

Assigning a Static IP address

Chapter 4 Deploying a Domain Joined Nano Server via PowerShell

15

Naming the workstation

Joining it to a Domain

Most of this could be completed through PowerShell remotely via WinRM and adding it to
TrustedHosts. However, the preference here is to have the system up and running and completed
in a more fully automated fashion.

The following cmdlet to obfuscate the creation of the XML within the DeployImage module was
added. The following Cmdlet can be used to create an unattend.xml:

New-UnattendXMLContent -Computername Contoso-Nano1 -Timezone
‘Eastern Standard Time’ -Owner ‘Contoso’ -Organization ‘Contoso’ -
AdminPassword ‘P@ssw0rd’

This will generate the XML content for a Computer with the following specs

Name : Contoso-Nano1
TimeZone : Eastern Standard Time
Owner : Contoso
Organization : Contoso

Password : P@ssw0rd

(The Password referred to is the Default Administrator account)

Once completed, the Unattend.xml file will need to be copied into the Destination file structure
under C:\Windows\system32\sysprep.

PowerShell Cmdlets for the Network Stack

Next, we’ll need to assign a static IP address for said server.

PowerShell Cmdlets for the Network Stack

Configuring the IP address using Unattend.xml

Nano Server can be accessed directly through the text console and can be configured with an IP
address post install.

At present NetSH.exe can still be utilized to configure the required settings.

The default network adapter name in Nano Server is called Ethernet. In this scenario the following
will be assigned to said Nano Server:

Chapter 4 Deploying a Domain Joined Nano Server via PowerShell

16

IPv4 Address : 192.168.1.10

Subnet : 255.255.255.0

Gateway : 192.168.1.1

DNS Server : 192.168.1.5

These settings can be assigned with two lines from NetSh.exe

netsh interface ipv4 set address Name=”Ethernet” static 192.168.1.10
255.255.255.0 192.168.1.1
netsh dns set dnsservers name=”Ethernet” source=static
address=192.168.1.5

To configure this once the Nano server boots up requires a script called SetupComplete.cmd
which exists at C:\Windows\Setup\Scripts.

Upon initial startup after processing Unattend.xml and before the login screen the script will
execute. So, we can build this script to auto configure our network with a little PowerShell and a
HereString.

$IPAddress=’192.168.1.10’
$Subnet=’255.255.255.0’
$Gateway=’192.168.1.1’
$DNS=’192.168.1.5’
$SetupCompleteCMD=@”
netsh interface ipv4 set address Name=”Ethernet” static $IPAddress $Subnet
$Gateway
netsh dns set dnsservers name=”Ethernet” source=static address=$DNS
“@
New-Item -ItemType File -Name SetupComplete.cmd -Force | Out-Null
Add-content SetupComplete.cmd -Value $SetupCompleteCMD

At the time of writing this Nano Server is STILL in technical preview and so unfortunately some
options can’t use at this time. First there is no directly way through the Emergency console to add
this to a Domain. In fact, there is no command that creates the account in Active Directory. Nano
Server does however support an Offline Domain join.

Establishing an offline Domain join requires the following three steps:

1. Create the offline Join file

2. Copy the file to the workstation/server

3. Execute an offline Join with the provided file

In this scenario we would like to join a workstation to a Domain with the following settings.

Domain : Contoso

Computer : Contoso-Nano1

Filename : domainjoin.djoin

Chapter 4 Deploying a Domain Joined Nano Server via PowerShell

17

Djoin.exe command is needed to create the file on the computer with the RSAT tools for Active
Directory. This can be run manually for the stated configuration in the following manner:

Djoin.exe /Provision /Domain Contoso /Machine Contoso-Nano1 /Savefile
domainjoin.djoin

This can also be run in PowerShell by providing objects to store the information.

$Domain=’Contoso’

$Computername=’Contoso-Nano1’

$Filename=’domainjoin.djoin’

Djoin.exe /Provision /Domain $Domain /Machine $Computername /Savefile $Filename

Next the file needs to be copied to the destination file system. Ideally the file needs to be in the
same folder as the Setup\Scripts folder.

The following command needs to be run on the destination system directly to join this system to a
Domain and does not require to be on the network to make this work once the file is the
destination system as this is an offline domain join

Djoin.exe /RequestODJ /loadfile C:\Windows\setup\scripts\domainjoin.djoin
/windowspath c:\windows /localos

Now to make this work we’ll be using the same process as detailed with SetupComplete.cmd and
a HereString only we’ll be appending it to the NetSh.exe content.
$Filename=’C:\Windows\setup\scripts\domainjoin.djoin’
$SetupCompleteCMD=@”
netsh interface ipv4 set address Name=”Ethernet” static $IPAddress $Subnet
$Gateway
netsh dns set dnsservers name=”Ethernet” source=static address=$DNS djoin /requestodj
/loadfile $Filename /windowspath c:\windows /localos shutdown -f -r -t 0
“@
Create the new one

Remove-Item -Path SetupComplete.cmd -Force -ErrorAction SilentlyContinue
New-Item -ItemType File -Name SetupComplete.cmd -Force | Out-Null
Add-content SetupComplete.cmd -Value $SetupCompleteCMD

With the Unattend.xml and the Setupcomplete.cmd in the appropriate locations the boot code
needs to be injected into the Nano Server to boot up, be named as it should be, have an IP address
assigned and joined to the appropriate Domain.

If you’d wish to take a deeper look at the script performing this in action just access: DeployImage
from www.powershellgallery.com .

Once you install the module, which has been Windows 10 tested with the Windows 10 ADK
installed, you can execute the following Cmdlet to get the sample scripts.

Copy-DeployImageSample

Just open up the script called DeployNanoServerVHDDomain.ps1 and run it.

Chapter 4 Deploying a Domain Joined Nano Server via PowerShell

18

Chapter 5 Enabling Auto Notification of Specific File Changes

19

Chapter 5

Enabling Auto Notification of
Specific File Changes

By: Thomas Rayner – MVP

Recently I was asked…

“How do I send an email automatically whenever a change is made to a

specific file?”

There are many 3rd party solutions to achieve this. I however wanted to take the opportunity to
learn of a way to complete this task via PowerShell. Setting up a file watcher seemed to address
the issue and its was actually simple to script.

The Code
The following was created to watch the intended file for changes:

$watcher = New-Object System.IO.FileSystemWatcher
$watcher.Path = 'C:\temp\'
$watcher.Filter = 'test1.txt'
$watcher.EnableRaisingEvents = $true

$changed = Register-ObjectEvent
 $watcher 'Changed' -Action {
write-output "Changed: $($eventArgs.FullPath)"
}

Creating the file watcher took the utilization of the FileSystemWatcher object. This script
specifically watches the entire directory and path for changes. An added filer is added to specify
the required file.

Next an ObjectEvent is registered to perform an action the watcher detects a change event. This
script highlights a simple output however it could easily modified to enable sending of an email or
performing some other task.

Removing the ObjectEvent is just as easy and can be performed using the following script:

Chapter 5 Enabling Auto Notification of Specific File Changes

20

Unregister-Event $changed.Id

Chapter 6 Copying the Output of the last PowerShell command to the clipboard

21

Chapter 6

Copying the Output of the last
PowerShell command to the
clipboard

By: Thomas Rayner – MVP

I recently needed to copy and paste a PowerShell script output. While poking around in
PowerShell, I discovered that both trying to copy and paste it out of PowerShell or hitting the up
arrow and piping whatever the last command was into Set-Clipboard was such a hassle!

Figure 5 – Microsoft Clippy

The Code

So to address this, I threw the following small function into my profile:

function cc { r | scb }

Chapter 6 Copying the Output of the last PowerShell command to the clipboard

22

Now PowerShell 5.0 is needed to evoke this. Specifically for use of Set-Clipboard. Lets now
break down the workings of the small function.

First I’m defining a function named cc which is not a properly named PowerShell function but for
now it will do the trick. Its assigned r | scb in which r is an alias for Invoke-History which re-runs
the last command typed. Try it yourself:

PS G:\> write-output "hah!"
hah!

PS G:\> r
write-output "hah!"
hah!

PS G:\> r
write-output "hah!"
hah!

Last but not least scb is an alias for Set-Clipboard which means whatever came out of the last
command will be the new contents of your clipboard.

Chapter 7 Validate the Length of An Integer

23

Chapter 7

Validate the Length of An
Integer

By: Thomas Rayner – MVP

A little while ago, I fielded a question in the PowerShell Slack channel which was “How do I
make sure a variable, which is an int, is of a certain length?”

Turns out it’s not too hard. You just need to use a little regex. Consider the following example.

The Code

[int]$v6 = 849032
[int]$v2 = 23
$v6 -match '^\d{6}$'
$v2 -match '^\d{6}$'

$v6 is an int that is six digits long. $v2 is an int that is only two inches long. On lines three and
four, we’re testing to see if each variables match the pattern ‘^\d{6}$’ which is regex speak for
“start of the line, any digit, and six of them, end of the line”. The first one will be true, because it’s
six digits, and the second one will be false. You could also use something like ‘^\d{4,6}$’ to
validate that the int is between four and six digits long.

Chapter 8 Allow a Null Value for An Object That Doesn’t Normally Allow it

24

Chapter 8

Allow a Null Value for An
Object That Doesn’t Normally
Allow it

By: Thomas Rayner – MVP

In the PowerShell Slack channel (powershell.slack.com) a question came up along the lines of “I
have a script that needs to pass a datetime object, but sometimes I’d like that datetime object to be
null”. Never mind that maybe the script could be re-architected. Let’s solve this problem.

The issue is, if you try to assign a null value to a datetime object, you get an error.

[datetime]$null
Cannot convert null to type "System.DateTime".

The solution is super easy. Just make the thing nullable.

[nullable[datetime]]$null

This will return no output. So when you’re declaring the variable that will hold your datetime
object, just make sure you make it nullable.

[nullable[datetime]]$date = $MaybeNullMaybeNot

Just for more proof this works as advertised, try this.

[nullable[datetime]]$date = $MaybeNullMaybeNot

try { [datetime]$null; write-output 'worked!' } catch { write-output 'no
worked!' }
no worked!

try { [nullable[datetime]]$null; write-output 'worked!' } catch { write-output
'no worked!' }
worked!

Cool!

Chapter 9 Getting Started with Pester

25

Chapter 9

Getting Started with Pester

By: Thomas Rayner - MVP

If you don’t know what Pester is, it’s a framework for running unit tests and validating
PowerShell code. Also, it’s awesome. In May I finally dipped my toe in the water with a pretty
simple test for a REALLY simple function. I’m not going to go into a world of detail on how
exactly all my Pester code works because there are tons of guides for that. What I’m going to do
instead is provide a quick run down of what I came up with.

First things first, I need a function to validate.

function Write-SomeMath
{
 param(
 [int]$First,
 [int]$Second
)
 return $First + $Second
}

I guess that will work. Write-SomeMath takes two integers and returns their sum. Hardly a
breathtaking display of complexity and function but it will do just fine for this example.

Now I need to install Pester. The easiest way to do this is using the PSGet module in PowerShell
5.0 to get it from PowerShellGallery.com.

Install-Module Pester -Scope CurrentUser -Force
Import-Module Pester

This Describe block will contain and – you guessed it – describe the tests (I just used my
filename) and provide a unique TestDrive (check out the getting started link).

Now I need a Context block.

Describe 'GoofingWithPester.ps1' {
 Context 'Write-SomeMath' {

 }
}

I’m further grouping my tests by creating a Context here for my Write-SomeMath function. This
could have been named anything.

Now, I could start with a bunch of tests, but I want to show off a particular feature of Pester that
allows you to pass an array of different test cases.

Chapter 9 Getting Started with Pester

26

Describe 'GoofingWithPester.ps1' {
 Context 'Write-SomeMath' {

 }
}

Describe 'GoofingWithPester.ps1' {
 Context 'Write-SomeMath' {
 $testcases = @(
 @{
 fir = 1
 sec = 2
 exp = 3
 test = '1 and 2'
 },
 @{
 fir = 3
 sec = 6
 exp = 91 #wrong on purpose
 test = '3 and 6 (wrong on purpose)'
 },
 @{
 fir = 4
 sec = 6
 exp = 10
 test = '4 and 6'
 }
)

 }
}

All I did was define an array called $testcases which holds an array of hash tables. It’s got the first
number, second number, expected result and a name of what we’re testing. Now I can pass this
entire array to a test rather than crafting different tests for all of them individually.

Describe 'GoofingWithPester.ps1' {
 Context 'Write-SomeMath' {
 $testcases = @(
 @{
 fir = 1
 sec = 2
 exp = 3
 test = '1 and 2'
 },
 @{
 fir = 3
 sec = 6
 exp = 91 #wrong on purpose
 test = '3 and 6 (wrong on purpose)'
 },
 @{
 fir = 4
 sec = 6
 exp = 10
 test = '4 and 6'
 }
)

Chapter 9 Getting Started with Pester

27

 It 'Can add <test>' -TestCases $testcases {
 param($fir,$sec,$exp)
 Write-SomeMath -First $fir -Second $sec | Should Be $exp
 }

 }
}

This is an It block which is what Pester calls a test. I’ve named it “Can add <test>” and it will pull
the “test” value from the hashtable and fill it in. Cool! I’m using the -TestCases parameter to pass
my array of test cases to the It block. Then I’ve got parameters inside the test for my first value,
second value and expected outcome. I execute Write-SomeMath with the values pulled from my
test cases and pipe the result to “Should Be” to compare the outcome to my expected outcome.

Now, just one more test for fun. What if I don’t pass an integer to my function?

Describe 'GoofingWithPester.ps1' {
 Context 'Write-SomeMath' {
 $testcases = @(
 @{
 fir = 1
 sec = 2
 exp = 3
 test = '1 and 2'
 },
 @{
 fir = 3
 sec = 6
 exp = 91 #wrong on purpose
 test = '3 and 6 (wrong on purpose)'
 },
 @{
 fir = 4
 sec = 6
 exp = 10
 test = '4 and 6'
 }
)
 It 'Can add <test>' -TestCases $testcases {
 param($fir,$sec,$exp)
 Write-SomeMath -First $fir -Second $sec | Should Be $exp
 }
 It 'Detects wrong datatypes' {
 {Write-SomeMath -First 9 -Second 'cat'} | Should throw
 }
 }
}

Another It block for detecting wrong datatypes. I pipe the result into Should throw because my
function should throw an error. For this to work properly, the code I’m testing has to be wrapped
in a scriptblock, otherwise the thrown error will occur and be trapped in my function.

Chapter 9 Getting Started with Pester

28

Here’s the outcome when I run this file!

Figure 6 – Pester Output

Pretty cool. My first test passes, the second one fails and tells me why, the third and fourth tests
pass. The fourth one is especially interesting. The function FAILED but because the test said it
SHOULD FAIL, the test itself passed.
So, that’s my “dip my toes in the water” intro Pester test. Stay tuned for more complicated
examples.

Chapter 10 Find missing Subnets in AD Sites and Services

29

Chapter 10

Find missing Subnets in AD
Sites and Services

By: Allan Rafuse – Future MVP

This has been a very common pain point for Active Directory administrators. AD is perfectly
planned according to Microsoft’s best practices and successfully deployed. But as time goes on,
network admins change the network topology, devices are added here and there and if there is no
formal process of adding new networks, AD Sites and Services will mostly likely not be updated
to reflect these changes.

Cloud Environments
Where I’ve seen this problem popping up again and again is in Azure or other virtual
environments. Why? This is due to the blurring of traditional job responsibilities between network
engineer and systems engineer/administrators. Admins can now log into their management
consoles and easily create new networks, assign VLANS and deploy a VM to them. Life is grand,
what took a few minutes used to take hours or days.

If AD Sites and Subnets are not correctly defined, a device will attempt to authenticate with a
domain controller, randomly somewhere on your network. If the DC see’s a request from a device
and it cannot locate it’s subnet, it reports this into a simple text file,
C:\Windows\Debug\netlogon.log. Viewing this text file can be tedious to go through and has to be
done on each domain controller.

Solution
The following PowerShell code is quite straight forward but was built to run from a single server
and remotely connect to each DC. It will remotely connect to a given DC and show any missing
IPs from that file.

The basic idea is to

1. Remotely read the C:\Windows\Debug\Netlogon.log text file into a variable

2. Read from the bottom of the file contents until we hit $FromDate (which is 30 days in the
example)

3. Build an array of a simple PowerShell object

4. Once you have the results, you can then display it to the screen, Out-File it to a file server for
central reporting, or even email it to yourself

Chapter 10 Find missing Subnets in AD Sites and Services

30

The downside to the log file is that it displays the raw IP. This is because the AD server does not
know the network topology and subnet mask of the devices failing to find their proper DC. This
holds true for the PowerShell code below. It will display all IPs that have attempted, but you will
still have to make the final decision on what type of network and netmask you assign in Active
Directory Sites and Services.

Things to thing about
After running this script you’ll hopefully find and fix everything. Perhaps you may want to
thinking about creating a script, run it as a scheduled task and centralize the results for further
auditing.

The Code

$FromDate = (Get-Date).AddDays(-30)
$Content = Get-Content "\\$DomainController\c$\Windows\Debug\netlogon.log"

Run through the netlogon.log (in reverse order, think about speed/performance) while the
dates are greater than $FromDate
$MissingEntry = @{}
For ($counter = $Content.Count; $counter -ge 0; $counter--) {
 If ($Content[$counter] -match "(\d\d)/(\d\d) (\d\d):(\d\d):(\d\d)") {
 $EntryDate = Get-Date -Month $matches[1] -Day $matches[2] -Hour $Matches[3] -
Minute $Matches[4] -Second $Matches[5]
 if ($EntryDate -lt $FromDate) {
 break
 }
 # Within the timeframe, let's save the IP and Date attempted in a hashtable. Only
keep the first hit, which is the latest failed site attempt
 $ip = $Content[$counter] -Replace ".* (.*)$", '$1'
 If ($MissingEntry[$ip] -eq $null) {
 $MissingEntry[$ip]= $EntryDate
 }
 }
}

Sort the missing IPs
$MissingEntry = $MissingEntry.GetEnumerator() | Sort-Object -Property Name

Output the missing IPs and failed date attempt
$MissingEntry | Select-Object @{name="DC"; expression={$DomainController}}, @{name="IP";
expression={$_.Name}}, @{name="Last Failed Site Attempt"; expression={$_.Value}}

Here are the results from $MissingEntry

DC IP Last Failed Site Attempt

-- -- ------------------------

DemoDC01 192.168.100.11 10/26 21:35:08

DemoDC01 192.168.31.100 10/26 22:01:35

Chapter 10 Find missing Subnets in AD Sites and Services

31

DemoDC01 192.168.31.110 10/26 21:53:16

DemoDC01 172.16.2.100 10/26 17:07:02

DemoDC01 172.16.2.101 10/26 22:05:55

DemoDC01 172.16.2.103 10/26 21:49:23

DemoDC01 172.16.2.104 10/26 21:38:14

DemoDC01 172.16.2.11 10/26 22:00:28

DemoDC01 172.16.2.12 10/26 21:55:08

DemoDC01 172.16.2.13 10/26 21:39:09

DemoDC01 172.16.2.14 10/26 22:01:40

DemoDC01 172.16.2.15 10/26 21:46:33

DemoDC01 172.16.2.16 10/26 22:03:43

DemoDC01 172.16.2.17 10/26 22:02:22

DemoDC01 172.16.2.18 10/26 21:34:52

DemoDC01 172.16.2.19 10/26 21:53:05

DemoDC01 172.16.2.20 10/26 14:10:05

DemoDC01 172.16.2.21 10/26 22:06:03

DemoDC01 172.16.2.22 10/26 22:06:25

DemoDC01 172.16.2.23 10/26 21:53:03

DemoDC01 172.16.2.24 10/26 16:32:10

DemoDC01 172.16.2.25 10/26 21:59:13

DemoDC01 172.16.4.10 10/26 22:04:26

DemoDC01 172.18.244.58 11/02 18:23:53

DemoDC01 172.18.65.232 11/02 18:23:55

Chapter 11 Copy Directories/Files to a list of Remote Computers

32

Chapter 11

Copy Directories/Files to a list
of Remote Computers

By: Allan Rafuse – Future MVP

Here is a quick code block that I use quite often to copy directories from a management server to a
ton of other servers.

Copy-Item [-Recurse]

Figure 7 – Copy and Paste like the pro’s

For the pros or even a beginner, you’re done, you’ve got the command you wanted… but did you
think about the rest of the information in this blog? Keep reading!

The problem is a request comes across your desk, more often than we want to admit, saying “We”
need to update this file or files on these completely random machines. Then you given a list of
servers and you need to quickly copy files to them.

1. Save the list of servers to a text file, read it in with Get-Content. This works cumbersome
when in RDP and PS Remitting Environments

content = Get-Content C:\Temp\SomeRandomFileCopy176.txt

Chapter 11 Copy Directories/Files to a list of Remote Computers

33

2. Reformat them into a PowerShell array by putting quotes around each of them and
commas. Example:

$Computers = @(
 "Server01",
 "Server02",
 "Server03.mydomain.local",
 "Server06"
)

3. Using/modifying the code at the bottom of this blog post

Myself, I love scripts, I love modules, but what I love more than anything is the flexibility
of PowerShell. I even love copying and pasting blocks or one liners directly into
PowerShell. So for the copy task presented above here is the magic that my mind goes
through:

1. Which machines do I need to copy files to

2. Are all the machines online

3. Test that the destination share path is reachable on all machines

4. Fix any errors with the remote destinations or simply remove them from the list

5. Copy the files

Here-Strings to the Rescue

Normally when you create a string in PowerShell, or an array it has some form of structure it has
to follow. With a Here-String,

$MyHereString = @"
 This can
be some random te text that
 and it's formatting will be preserved when the Here-String variable
 is used"
"@
$MyHereString

So instead of creating some random temp file on the management server every time, I simply open
my Microsoft OneNote and copy and paste the code below. But the technique I use to manage the
list of machines is called a PowerShell “Here-String”. Then further down in the code will

Chapter 11 Copy Directories/Files to a list of Remote Computers

34

“convert” the Here-String into an array so that we can easily loop through it. In my opinion when
using reusable code blocks, PowerShell Here-Strings are the most forgiving and easiest/fastest to
work with as they maintain formatting. To use a Here-String, the unformatted text, in this case a
list of machines, are encapsulated between a starting @” tag and a close “@.

Note The closing “@ MUST BE on its own line and in column 1.

Again, this is code I copy and paste directly into a PS Window. It allows flexibility when logging
into a locked down Remote Desktop environment or when using PowerShell remoting.

Here is the sample script to copy a directory from a source server to the servers listed in the
$Computers Here-String below.

$Computers =
@"
 Server01
 Server02
Server03.mydomain.local
 Server06
 Server07
 Server08
 Server09
 Server26
 Server27
 Server28
 Server29
 Server30.mydomain.local
 Server35
 Server36
 Server45
 Server46
 Server112
Server113
 Server114
"@

Here we will set the source and remote share location and path
$SourceDir = "D:\Software\Datadog\v5.8.5-x64-privatefix"
$RemoteSharePath = "D$\Software\Datadog"

Loop through the Here-String, trim each line and build the ComputersArray
$ComputersArray = @()
$Computers.Split("`n") | % { if ($_.Trim()) { $ComputersArray += $_.Trim() } }
$AllRemoteSharePathsExist = $True

Do a precheck to see if all the remote directories are reachable and exist
$ComputersArray | % {
 If ((Test-Path "\\$_\$RemoteSharePath") -eq $False) {
 Write-Host -ForegroundColor Red "[PreCheck Error] \\$_\$RemoteSharePath
does not exist"
 $AllRemoteSharePathsExist = $False
 }
}

If the precheck passes, then copy and overwrite existing files
If ($AllRemoteSharePathsExist) {
 $ComputersArray | % { Write-Host "[$_] Copying $SourceDir to
\\$_\$RemoteSharePath"; Copy-Item -Path "$SourceDir" -Destination
"\\$_\$RemoteSharePath" -Recurse -Force }
} Else {

Chapter 11 Copy Directories/Files to a list of Remote Computers

35

 Write-Host "Errors Exist, Exiting"
}

Happy Copying!

Chapter 12 Making the Configuration Manager PowerShell Module Discoverable

36

Chapter 12

Making the Configuration
Manager PowerShell Module
Discoverable

By: Sean Kearney – MVP

I’m not going to ENABLE-RANT today. Anybody that uses System Center Configuration
Manager knows one thing, you need to MANUALLY add in the Cmdlets to use them using this
line

Import-Module ‘C:\Program Files (x86)\Microsoft Configuration
Manager\AdminConsole\bin\ConfigurationManager.psd1’

True, it’s irritating that I can just do something like this in a modern server

Import-Module ConfigurationManager

If this were there not only would it be EASIER to access the module locally, it would also allow
me to create and establish Remote PowerShell sessions to EASILY work with Configuration
Manager and make Implicit remoting far smoother.

But rather than get upset, I decided to sit down and find out why. Why if I do THIS

Get-Module –listavailable ConfigurationManager

Does it NOT find the module?

The answer was surprisingly easy (and a bit silly it got missed by somebody)

For your module to be discoverable it needs to follow two rules

The PSD1 file must be in a folder of the same name

This Folder must be added to the System Environment variable “PSModulePath”

So examining my default PSModulePath on a Configuration Manager 1606 server It was
DEFINITELY not there (yes, fully patched, rebooted multiple times)

$ENV:PSModulePath

Chapter 12 Making the Configuration Manager PowerShell Module Discoverable

37

C:\Users\Administrator.SYSTEMCTR\Documents\WindowsPowerShell\Modules;C:\Program
Files\WindowsPowerShell\Modules;C:\Windows\system32\WindowsPowerShell\v1.0\Modules;C:\
Program Files (x86)\Microsoft SQL Server\110\Tools\PowerShell\Modules\

So initially I thought I would just add it to the PSModulePath in the following fashion while in a
PowerShell prompt as Administrator.

$ENV:PSModulePath=($ENV:PSModulePath) + ‘;C:\Program Files (x86)\Microsoft
Configuration Manager\AdminConsole\bin\’

Tried that and looked and still nothing…. Oh, right forgot the FIRST rule

The PSD1 file must be in a folder of the same name

Our problem is that all of the needed files and content exist in the BIN folder and it needs to be
renamed to ConfigurationManager. But obviously, we can’t do THAT or things will break.

We COULD just make a copy of that folder called “ConfigurationManager” and add THAT to the
path. That might work too. But that offers up other scary words.

“Supportability” (Microsoft probably won’t support that)

“Patching” (If it DID work, we’d have to dupe that folder EACH and EVERY TIME we patched)

“Works?” (Moving supporting Binaries in ANY major application is just Ripe with Risk)

The it dawned on me. Since VISTA (Stop cringing) we’ve had Junctions. A Junction is a
“Pseudo Folder” which ACTS like a Directory but points off to another Directory.

We COULD create a Junction called “ConfigurationManager” and point it RIGHT BACK to the
folder with all of the goodies needed in the Configuration Manager module.

The Code

Well guess what… it works! Here’s the Script in PowerShell to make this useful for you as well.

Create a Junction to act as a folder called “Configuration Manager” pointing
to the
‘Bin’ folder which has the Actual Configuration Manager module
This provides a “Pseudo Folder” to match the Module Name needed

$TargetFolder=’C:\Program Files (x86)\Microsoft Configuration
Manager\AdminConsole\bin\’
$TargetPath=’C:\Program Files (x86)\Microsoft Configuration
Manager\AdminConsole\PSModule\’

Verify this has not been done yet, if it has go ahead
If (!(Test-Path “$($TargetPath)ConfigurationManager\”))
{
New-Item -ItemType Directory -Path $TargetPath –Force
CMD.EXE /C MKLINK /J “$($TargetPath)ConfigurationManager” $TargetFolder
You can use this line INSTEAD of MKLINK if you are running
PowerShell 5

Chapter 12 Making the Configuration Manager PowerShell Module Discoverable

38

#New-Item -ItemType Junction -Name ConfigurationManager -Value $TargetFolder -
Path $TargetPath
}
Permanently update the PSModulePath Environment variable
With the parent path holding the Configuration Manager folder
This will make it fully discoverable
$OldPSPath=(Get-ItemProperty -Path
‘Registry::HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session
Manager\Environment’ -Name PSModulePath).PSModulePath
Verify this has not been done yet, if it has go ahead
IF (!($OldPSPath | Select-String -SimpleMatch
“$($TargetPath)ConfigurationManager”))
{
$NewPSPath=$OldPSPath+’;’+$TargetPath+’ConfigurationManager’
Set-ItemProperty -Path
‘Registry::HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session
Manager\Environment’ -Name PSModulePath –Value $NewPSPath
}
$ENV:PSModulePath=$NewPSPath

Now I can just run Import-Module ConfigurationManager and Woohoo! I’m off to races!

Chapter 13 Resolving issues with slow Outbound mail in Office 365 in a Hybrid connection using
a SmartHost or Internal Appliance

39

Chapter 13

Resolving issues with slow
Outbound mail in Office 365 in
a Hybrid connection using a
SmartHost or Internal
Appliance

By: Sean Kearney – MVP

You may find that flow to Office 365 hosted users is slow after initial Hybrid Configuration. But
the answer is closer than you think and is only one Cmdlet away with Windows PowerShell.

The actual problem is the mail flow to Office 365 is slow because the connector is defaulting to
using DNS for mail sending. In this scenario, the server is either sending directly to an internal
appliance (such as a Barracuda) or uses a Smarthost on the internet (Such as on SBS 2011 / SBS
2008) and in many SMB configurations.

Normally you would change the connector properties to point the exist SmartHost and the
problem would be resolved.

Chapter 13 Resolving issues with slow Outbound mail in Office 365 in a Hybrid connection using
a SmartHost or Internal Appliance

40

Figure 8 – SmartHost Connection

Chapter 13 Resolving issues with slow Outbound mail in Office 365 in a Hybrid connection using
a SmartHost or Internal Appliance

41

What you will find in the connector created by DEFAULT with the Hybrid wizard is this does
NOT solve the problem. You can see the actual problem when you view the connectors with the
Get-SendConnector Cmdlet and view a full list of the properties.

Get-SendConnector -identity ‘SmartHost Connector’ | Format-List *

Figure 9 – Get-SendConnector output

Get-SendConnector -identity ‘Outbound to Office365’ | Format-List

Figure 10 – Get-SendConnector Output for Office 365

Note the highlighted areas of the Office 365 connector. By default it’s
insistent on a TLS connection and a few additional properties (which are
fine if you’re hosting a live Exchnage/DNS configuration)

However in the case of a SmartHost, it may not like this (Bad Smarthost on the internet with lousy
Authentication ?) or you’re running an internal box to handle outbound spam which is not
configured to accept TLS internally.
Three options you have. (as Yoda would say)

Chapter 13 Resolving issues with slow Outbound mail in Office 365 in a Hybrid connection using
a SmartHost or Internal Appliance

42

1. One, get a better SmartHost provider or improve your internal Device security to accept
TLS.

2. The Second option is to recreate the Office 365 Connector from scratch with the same
settings and point straight to the SmartHost.

3. The third (and probably quite a bit easier) is to adjust the connector through PowerShell
and disable the requirement for TLS and remove the additional properties left behind by
Office 365’s Hybrid wizard (which should be fine for INTERNAL devices)

First make a copy of the Connector should you need to Rollback the process

Get-SendConnector -identity ‘Outbound to Office365’ | Export-Clixml
Office365Connector.xml

Then adjust the particular connector name for Office 365 outbound mailflow on your On Premise
Exchange environment

Set-SendConnector -identity ‘Outbound to Office365’ -RequireTLS $False -
RequireTLS $False -TlsAuthLevel $NULL -TlsDomain $NULL -ErrorPolicies Default

No restart of any services are required and the effect should be immediate. Note as always, any
mail stuck in the queue under the old configuration is just good for one thing… NDR’s.

Chapter 14 Use PowerShell to Work with Data from OMS

43

Chapter 14

Use PowerShell to Work with
Data from OMS

By: Ed Wilson – The Scripting Guy

Microsoft Scripting Guy, Ed Wilson, is here. One of the things I have been working on a lot the
past month is the new Microsoft Operations Management Suite Blog. For one thing, it is on the
new blogging platform we using at Microsoft, so the blog is like a new toy with lots of fun things
for a geek to play with. In addition, Microsoft Operations Management Suite (MS OMS) is a
tremendously powerful platform that uses Windows PowerShell in the background, so it is also
way cool to play with. With these two sets of givens, it was only a matter of time before I begin to
merge the two.

The other day I wrote a blog post for the MS OMS blog titled Perform system update assessment
with #MSOMS. I have written such articles before for the Hey, Scripting Guy! Blog, but they
were always a bit annoying to write because update information has a tendency to be reported in
different ways, in different places, depending on the level of the operating system and so on. It can
be done, but I am never too sure of the results, for instance, as compared to what the Security
Update tool reports in Control Panel. The System Update Assessment tool in MS OMS is reliable,
produces cool reports, is quick, and it can export a CSV file.

Parsing MS OMS data with PowerShell

The first thing I do is in MS OMS. I click the Export button at the bottom of the System Update
Assessment tool:

Chapter 14 Use PowerShell to Work with Data from OMS

44

Figure 10 – Microsoft OMS Suite

After I save the data in a location I can find, I open the data in a Microsoft Excel spreadsheet:

Figure 11 – CSV Output from the Export

Importing the CSV file using PowerShell

Chapter 14 Use PowerShell to Work with Data from OMS

45

The way cool thing about importing the CSV file with Windows PowerShell is that I obtain
objects that represent each row that appears in my Excel sheet. This makes the data easier to read
and manipulate.

Importing the CSV file is easy, I use the Import-CSV cmdlet and store the returned objects in a
variable that I name $csv:

$csv = Import-Csv C:\fso\SearchResults.csv

When I call the $csv variable, the objects that I stored appear in my Windows PowerShell
console…and scroll and scroll and scroll. The commands and a portion of the output are shown
here:

Figure 12 – Importing the CSV from OMS

Each of the column headings now appear as a property associated with each instance of the object.
So how many objects (rows) do I have? The following command shows me that there are 522:

PS C:\> $csv.Count

522

Chapter 14 Use PowerShell to Work with Data from OMS

46

I may be interested in how many servers need which update. I can do this by grouping the updates
by title, and then sorting the output. I use the following command (ft is an alias for Format-Table):

$csv | group title -NoElement | sort count -Descending | ft count, name

Here is the output:

Figure 13 – Grouping the output

Perhaps I am interested in the KB ID, the severity, and the computers to which the update applies.
I can easily use a command such as the following to obtain the information:

$csv | select computer, kbid, msrcseverity | sort msrcseverity, computer

The output will be something like the following:

Chapter 14 Use PowerShell to Work with Data from OMS

47

Figure 14 – Filtering to show only Critical updates

Maybe what I want to know is how many updates require a reboot. I can obtain this information
by using the following command:

$csv | sort rebootBehavior -Descending | where rebootbehavior -eq
'CanRequestReboot' |
select computer, kbid, rebootbehavior, MSRCSeverity

The command and its output are shown here:

Chapter 14 Use PowerShell to Work with Data from OMS

48

Figure 15 – Filtering the output to see which updates require reboots

One thing that is kind of fun is to see how long it will take to install of these updates. There is an
InstallTimePredictionSeconds property that I can use. All I need to do is add all the values
together. (Note that some of the updates do not include a prediction time.) I use the following
command:

PS C:\> $a = 0

PS C:\> $csv | % {$a+=$_.installtimepredictionseconds}

PS C:\> $a

12343.6000473499

Dividing by 60 gives me the number of minutes:

PS C:\> $a / 60

205.726667455832

Chapter 14 Use PowerShell to Work with Data from OMS

49

This is just scratching the surface of how I can use Windows PowerShell to parse the data
exported from Microsoft Operations Management Suite. Remember, it is Windows PowerShell
and CSV manipulation. I have written several posts about using PowerShell with CSV files.

Chapter 15 Use PowerShell to Explore Office 365 Installation

50

Chapter 15

Use PowerShell to Explore
Office 365 Installation

By: Ed Wilson – The Scripting Guy

It is now time to use some Windows PowerShell cmdlets to explore my Office 365 tenant
installation. One of the things I figured out yesterday is that I do not want to always have to be
typing my credentials. For one thing, I don’t remember them very well. For another thing, when I
change the credentials to a nice long pass phrase, I will have an even harder time getting it right.
Also, I tend to open and close the Windows PowerShell console on a routine basis—so that makes
things that much harder. Therefore, my first order of business is to securely store my Office 365
credentials.

One of the neatest tricks I have ever run across, I got from Lee Holmes. Actually, I have gotten
several really cool tricks from Lee, but this is one that I use routinely. I want to store my
credentials for Office 365, so I first use the Get-Credential cmdlet to obtain my credentials and to
turn the user name and password into a credential object. I then store the credential object in a file
by using the Export-CliXML cmdlet. I can actually do this in a single line. The command is
shown here (this is a single-line command that I broke at the pipeline character for readability on
this blog):

Get-Credential "admin@ScriptingGuy.OnMicrosoft.Com" |
Export-Clixml c:\fso\ScriptingGuyCredential.xml

That is it. I have now saved my Scripting Guy credential to a file. Ah, but what about security?
After all, I could have simply saved the password in a text file, and then used the ConvertTo-
Secure string to help me recreate a credential object. But dude, that would not be very secure. So,
I asked Lee Holmes about this. Here is his reply…

The underlying security comes from the ConvertFrom-SecureString functionality, which
Export-CliXml relies on to export secure strings to their serialized form.

The credentials are encrypted with the Windows Data Protection API (DPAPI), which means that
you can literally share it with people, put it in untrusted storage, or put it on the billboard of Times
Square. The reason you are allowed to encrypt it and decrypt it without typing any passwords is
that they key is automatically generated from a combination of your user account and the current
machine.

Because of that, even somebody else on your same machine can’t decrypt your credentials.

Chapter 15 Use PowerShell to Explore Office 365 Installation

51

Cool, so I have stored my credentials in a secure fashion. Now what do I need to do to get them
back so I can continue to work? Well, that is even simpler. I use the Import-Clixml cmdlet, and I
store the returned credential object in a variable like I always do when doing when I am remoting
or anything else. Here is the command I use:

$Cred = Import-Clixml C:\fso\ScriptingGuyCredential.xml

Next, I use the Connect-MsolService cmdlet like I did yesterday to connect to my tenant
installation:

Connect-MsolService -Credential $cred

At this point, I can use any of the cmdlets from the MSOnline module. For example, one of the
things I want to do is to look at the company information. It is easy. I use the Get-
MsolCompanyInformation cmdlet. This command is shown here:

Get-MsolCompanyInformation

The command and the output from the command are shown here:

Figure 16 – Connecting to Office 365 using PowerShell

Next, I need to check to see how many active units I have, how many consumed units I have, and
what kind of license pack I have. The command is simple. I use the Get-MsolAccountSku cmdlet,
and it provides exactly what I need. The command and output are shown here:

PS C:\> Get-MsolAccountSku

AccountSkuId ActiveUnits WarningUnits ConsumedUnits

Chapter 15 Use PowerShell to Explore Office 365 Installation

52

———— ———– ———— ————-

ScriptingGuy:ENTERPRISEPACK 25 0 25

Note It is important to remember to use Tab expansion when working with the MSOnline module
because it does not export any cmdlet aliases. I checked it by using this command:

gcm -Module MSOnline | % { gal -Def $_.name -ea 0}

To find the contact for the Office 365 enterprise tenant installation, I use the Get-MsolContact
cmdlet, as shown here:
PS C:\> Get-MsolContact

EmailAddress DisplayName

———— ———–

bobk@tailspintoys.com Bob Kelly (TAILSPIN)

That is all there is to using Windows PowerShell to explore the settings and capabilities of my
Office 365 installation.

Chapter 16 PowerShell 5 Classes: Constructor Overloading

53

Chapter 16

PowerShell 5 Classes:
Constructor Overloading

By: Ed Wilson – The Scripting Guy

Microsoft Scripting Guy, Ed Wilson, is here. Today I want to talk about overloaded constructors. I
know, I know, I know…
It sounds like some sort of engineering failure. But that is not the case. In fact, constructor
overloading makes your code much more flexible, and even easier to read—when you learn the
trick. And today we are going to unmask the secrets of constructor overloading with Windows
PowerShell 5.0 classes in Windows 10.
This is way cool stuff, and soon you will be able to entertain friends at night, regal workshop
audiences in real-time, and maybe even get more work done sooner and with less effort. After all,
that is the real payoff. So, let’s get started.

What’s an overload anyway?

An overload is more than one way of doing something. So for example, when I call a method and
pass one or more parameters to it, that calls for an overloaded method definition. This means in
the code, I need to be able to handle one or more ways of doing things. It also means that when I
call that method, I have more than one way of calling the method.

A simple example is the GetProcessesByName method from the System.Diagnostics.Process
class. It has two overloads: one in which I pass only the process name and the other where I pass
the process name and the name of the computer. This overload definition gives me the ability to
return processes locally or remotely. Here are the overload definitions:
PS C:\Users\mredw> [System.Diagnostics.Process]::GetProcessesByName

OverloadDefinitions

——————-

static System.Diagnostics.Process[] GetProcessesByName(string processName)

static System.Diagnostics.Process[] GetProcessesByName(string processName, string

machineName)

Chapter 16 PowerShell 5 Classes: Constructor Overloading

54

Just as I can overload a method definition, I can also overload the constructor. The constructor is
what is used to create a new instance of a class.

Remember that when I have a new instance of a class I have created an object. Also remember
that a class itself is simply a template for creating objects. I talk about this in my Introduction to
PowerShell 5 Classes blog post and in Introduction to PowerShell 5 classes—The Video.

There are also different ways I can create a new instance of a class. As an example, consider the
System.DateTime class that represents an instance of date and time. I can create an instance of this
class in many different ways. To find these ways, I use the static New method, for example:

[datetime]::new

Here is an image of the overload output:

Figure 17 – Overload Output

Chapter 16 PowerShell 5 Classes: Constructor Overloading

55

Creating overloaded constructors

To create a constructor (overloaded or otherwise) in a Windows PowerShell 5.0 class, I need to
remember that I am really creating a method. The method has the same name as the class name.
When I do this, I have a constructor.

For example, I want to add a constructor to my Car class (the simple class I talked about in
PowerShell 5: Create Simple Class).

Note You also need to understand creating methods because, after all, a constructor is really just a
method. For information about methods, please refer to Adding Methods to a PowerShell 5 Class.

Class Car
{
 [String]$vin
 static [int]$numberOfWheels = 4
 [int]$numberOfDoors
 [datetime]$year
 [String]$model
}

Now I add a method with the name of Car. Here is the syntax:

Name of Class
A pair of parentheses for the input
A script block that does something

All cars have a VIN, so it makes sense to have a VIN input when creating an instance of the class.
Here is my constructor:

Car ([string]$vin)
 {$this.vin = $vin}

The complete script now looks like this:

Class Car
{
 [String]$vin
 static [int]$numberOfWheels = 4
 [int]$numberOfDoors
 [datetime]$year
 [String]$model
 Car ([string]$vin)
 {$this.vin = $vin}
}

When I run it and load the class, I can now create a new instance of the class by using my
constructor. The syntax is shown here:

Chapter 16 PowerShell 5 Classes: Constructor Overloading

56

PS C:\> [car]::new(1234)

vin numberOfDoors year model
— ————- —- —–
1234 0 1/1/0001 12:00:00 AM

To overload this constructor, I add additional variations—each using the same name. Windows
PowerShell will figure out what I want to do. Here I add overloads to my constructor:

Class Car
{
 [String]$vin
 static [int]$numberOfWheels = 4
 [int]$numberOfDoors
 [datetime]$year
 [String]$model
 Car ([string]$vin)
 {$this.vin = $vin}
 Car ([string]$vin, [string]$model)
 {$this.vin = $vin
 $this.model = $model}
 Car ([string]$vin, [string]$model, [datetime]$year)
 {$this.vin = $vin
 $this.model = $model
 $this.year = $year}
 Car ([string]$vin, [string]$model, [datetime]$year, [int]$numberOfDoors)
 {$this.vin = $vin
 $this.model = $model
 $this.year = $year
 $this.numberOfDoors = $numberOfDoors}
}

The first thing I want to do is to see what overloads I have. This is shown here:
PS C:\>[car]::new

OverloadDefinitions
——————-
Car new(string vin)
Car new(string vin, string model)
Car new(string vin, string model, datetime year)
Car new(string vin, string model, datetime year, int numberOfDoors)

This means I can create the car in a variety of methods. Here are a few examples:

PS C:\> [car]::new(1234)

vin numberOfDoors year model
— ————- —- —–

Chapter 16 PowerShell 5 Classes: Constructor Overloading

57

1234 0 1/1/0001 12:00:00 AM

PS C:\> [car]::new(1234, "chevy", "1/2/2015",3)

vin numberOfDoors year model
— ————- —- —–
1234 3 1/2/2015 12:00:00 AM chevy

That is all there is to using overloaded constructors in PowerShell 5.0.

Chapter 17 Filtering Event Logs with PowerShell

58

Chapter 17

Filtering Event Logs with
PowerShell

By: Ed Wilson – The Scripting Guy

Hey, Scripting Guy! I try to use the Get-WinEvent cmdlet to search event logs, but it is pretty
hard to do. Also, I don’t see the nice switches that I had with Get-EventLog, so I don’t see why I
should use the other cmdlet and have to pipe everything to Select-Object or Where-Object.

Microsoft Scripting Guy, Ed Wilson, is here. One of the things that you need to realize is that with
Windows PowerShell, one should always filter to the left of the pipeline. This is the prime
directive when it comes to working with large amounts of data. Event logs can be huge and
contain massive amounts of data. They can consume huge amounts of bandwidth when they are
delivered across the network or other places. Like the alligator that the Scripting Wife and I saw
while we were hiking the other day, this can be a hidden trap with serious outcomes if the network
admin is not paying attention.

Seven parameter sets

The Get-WinEvent cmdlet has a number of parameter sets. In fact, it has seven parameter sets.
For the sake of the IT pro who needs to filter data from event logs, there are exactly three
parameter sets. The parameter sets are shown here:

Chapter 17 Filtering Event Logs with PowerShell

59

Figure 18 – Getting the syntax for Get-WinEvent

Here are the three filter parameters:
PS C:\> ((gcm Get-WinEvent | select -expand parametersets).parameters).where({$_.name
 -match '^filter'}) | select name -Unique

Name
—-
FilterXPath
FilterXml
FilterHashtable

Of the three filter parameters, the easiest for me to use is FilterHashTable. The FilterHashTable
parameter accepts…wait for it…you will never guess this one…
…a hash table.
That is right, the FilterHashTable parameter accepts a hash table as the input parameter.

Note If you need a refresher about hash tables, see Learn the Basics of PowerShell Hash Tables.

Here is the most important thing you need to understand when using the FilterHashTable
parameter:

Everything goes into the hash table.

Chapter 17 Filtering Event Logs with PowerShell

60

The syntax is shown here:
Get-WinEvent [-FilterHashtable] <hashtable[]> [-MaxEvents <long>] [-ComputerName
<string>] [-Credential <pscredential>] [-Force] [-Oldest] [<CommonParameters>]

I said everything—well obviously, not everything. But things used for filtering the events, such as
the event log name, the ID, and stuff like that go into the hash table. Here is a table of things you
can use when creating a filter hash table:

Figure 19 – Filter Hash Table

The filter hash table takes the following form:
 At sign
 Opening Curly bracket
 Keyname
 Equals
 Value
 Closing Curly bracket

Here is a simple example that returns all the events from the application log:

Get-WinEvent -FilterHashtable @{logname='application'}

Although PowerShell is often very good at converting input to the required data type (dynamic
type system), the filter hash table must have the string values placed in single or double quotation
marks. For example, if I don't put my value for the LogName keyword in quotation marks, the
following error message appears:

Chapter 17 Filtering Event Logs with PowerShell

61

Figure 20 – Showing syntax errors and LogName requiring quotation marks

Note When testing a filter hash table for the Get-WinEvent cmdlet, it is a good idea to limit the
amount of data returned to just a few records.

This is where MaxEvents is a useful parameter.

To add another key name/value combination to FilterHashTable, separate the key name=value pair
with a semicolon. This is shown here, where I search the Application log for event ID 413.

Get-WinEvent -FilterHashtable @{logname='application'; id=413}

I can get an idea about the properties and values of an event log record by selecting a single event
and piping the output to the Format-List cmdlet (fl is an alias). I then select all of the properties by
using the asterisk (*) wildcard character. This is shown here:

Chapter 17 Filtering Event Logs with PowerShell

62

Figure 21 – Filtering for application log eventid =413

By looking at the leven parameter, and knowing that my entry is an error record, I can surmise
that I can filter specifically on events that have the ID of 413 and are error records. Again, I use a
semicolon to separate my key name=value pair. Here is my revised query:

Get-WinEvent -FilterHashtable @{logname='application'; id=413; level=2}

The output is shown here:
PS C:\> Get-WinEvent -FilterHashtable @{logname='application'; id=413; level=2} -
MaxEvents 1

 ProviderName: ESENT
TimeCreated Id LevelDisplayName Message
———– — —————- ——-
10/18/2015 8:32:34 AM 413 Error SettingSyncHost (392) Unable …
PS C:\>

Chapter 17 Filtering Event Logs with PowerShell

63

That is how you can use Windows PowerShell to read the event logs.

Chapter 18 Use the PowerShell 5 Convert-String Cmdlet

64

Chapter 18

Use the PowerShell 5
Convert-String Cmdlet

By: Ed Wilson – The Scripting Guy

I am continuously amazed with the things I am finding. In the past, I have always advocated that
serious network administrators learn at least the basics of Regular Expressions. They are a
powerful way of manipulating strings, and they are everywhere in Windows PowerShell (at least
as an option). But in Windows PowerShell 5.0, that becomes a little bit less of a requirement.

Convert-String

One of the stealth cmdlets making an appearance in Windows PowerShell 5.0 is the Convert-
String cmdlet. It is possible you have heard about ConvertFrom-String, which is also a new
cmdlet—but more than likely, Convert-String has remained under the covers. In fact, when I first
was reading through the documentation for Windows PowerShell 5.0, I saw ConvertFrom-
String, and then in the very next sentence, I saw Convert-String. I thought I had discovered a
documentation bug.

Not so. Convert-String is way cool, extremely powerful, and more than a little finicky. This is a
cmdlet that demands to be played with and explored to see what it can do for you. You will want
to spend half-a-day or more experimenting before you can get really comfortable with it.

But the payoff will permit you to do amazing things from the command line. In mere minutes, you
can accomplish what would have taken days of writing custom string manipulation code. It is that
good.

The old flipty dipty

A very common task among IT operations is manipulating user's names. Typically, this takes the
form of taking first name/last name and switching them around to last name/first initial. In the past
with Windows PowerShell, this was not a major pain (if one had written such code), but it was a
bit complex. I mean, I had to split the name at something like a comma, and create an array of

Chapter 18 Use the PowerShell 5 Convert-String Cmdlet

65

name elements, then move the array of name elements around, and then use a string method to
select the first initial of the second element in the array.

Like I said, not horribly difficult if you had done that a lot—but still pretty hard to write from
scratch the first time around.

With Convert-String, I don’t even need to write a script to do this. I can do it from the command
line. Here is an example:

"Mu Han", "Jim Hance", "David Ahs", "Kim Akers" | Convert-String -Example "Ed
Wilson=Wilson, E."

The way Convert-String works is that I can pipeline strings. Then I specify an example of what I
want my output to look like. If input strings match up properly with my pattern, the output I
specify will be created. Here is what my previous code looks like when I run it on Windows
PowerShell 5.0 on my laptop running Windows 10:

Figure 22 – Viewing the output from Convert Sring

Expanding the string idea

I know that I don’t have to manually type in strings to get the Convert-String cmdlet to work. I
mean, that would be like so last century. But can I dynamically create my input on the fly? Well,
the following example proves this. I do not really have a specific use case scenario for my
example, but it will give you an idea of some of the things you might want to play with.

I collect a collection of processes, and I look only for Svchost processes. I then choose the last 13
entries in my CSV that I create on the fly, and store them back into the $a variable. The $a
variable now contains SVCHOST and the PID. Then I grab the PID and the SVCHOST name so
that I can manipulate my output to form a specific pattern. Here is the code:

Chapter 18 Use the PowerShell 5 Convert-String Cmdlet

66

$a = gps -Name svchost | select processname, id | ConvertTo-Csv -
NoTypeInformation | select -Last 13
$a | Convert-String -Example '"svchost", "219"=219, s.'

When I run the code, I obtain the output shown here:

Figure 23 – expanding options with Convert-String

That is all there is to using the Convert-String cmdlet.

Chapter 19 Use PowerShell to Detect if a Location is a Directory or a Symlink

67

Chapter 19

Use PowerShell to Detect if a
Location is a Directory or a
Symlink

By: Thomas Rayner – MVP

In PowerShell, symbolic links (symlinks) appear pretty transparently when you’re simply
navigating the file system. If you’re doing other work, though, like changing ACLs, bumping into
symlinks can be a pain. Here’s how to tell if a directory in question is a symlink or not.

PS C:\Users\ThmsRynr> ((get-item c:\symlink).Attributes.ToString())
Directory, ReparsePoint

PS C:\Users\ThmsRynr> ((get-item c:\normaldir).Attributes.ToString())
Directory

Here, we’re just running a Get-Item command on two locations, getting the Attributes property
and converting to a string. The first item is a symlink and includes “ReparsePoint” in its attributes.
The second item is a normal directory and does not include “ReparsePoint”.

So that means we can do something as easy as this.

PS C:\Users\ThmsRynr> ((get-item c:\symlink).Attributes.ToString() -match
"ReparsePoint")
True

PS C:\Users\ThmsRynr> ((get-item c:\normaldir).Attributes.ToString() -match
"ReparsePoint")
False

Easy. If the above values have “ReparsePoint” in them, we know they are a symlink and not just a
regular directory. In my case, my script to apply ACLs to a group of directories avoided symlinks
with ease.

Chapter 20 Bypassing PowerShell Execution Policy

68

Chapter 20

Bypassing PowerShell
Execution Policy

By: Thomas Rayner – MVP

Let me be absolutely clear about this chapter. I do not in any way encourage or support people
who wish to use the below information to circumvent the controls put in place by companies and
administrators. This post is strictly for academic purposes and for the sake of sharing information.

PowerShell Execution Policies control whether or not a system may run a PowerShell script based
on whether the script is signed or not. See the about_Execution_Policies Technet page for more
information if you are unfamiliar with execution policies or how to apply them. Execution policies
do not, however, limit a user or service from running commands in a PowerShell shell
(PowerShell.exe).

So, what if you have an unsigned script you want to run but your execution policy is preventing it?
Well, there’s a way to bypass the execution policy. And it’s run from a PowerShell shell.

Administrative users can easily bypass the execution policy with this command.

PowerShell.exe -noprofile -executionpolicy bypass -file "\\path\to\file.ps1"

But what about limited users? Well there’s something for them, too.

Powershell.exe -NoProfile -Command {.([scriptblock]::create((Get-Content
"\\path\to\script.ps1" | out-string)))}

That’s right, just one line. No registry hacking, no weird developer program strangeness, just a
command that allows a user or service to subvert the execution policy of the machine.

Let’s break down the command. We’re launching PowerShell.exe, not exactly a puzzler. We want
it with no profile and we’re telling it to run a command. The trick is that the command we’re
running is effectively going to be the script that our execution policy would otherwise block.

The dot is basically an alias for “execute” and in this case, we’re telling it to execute what’s in the
proceeding round brackets. The round brackets contain instructions to create a new ScriptBlock
out of the contents of the .ps1 file that the execution policy would otherwise prevent from running.

Chapter 20 Bypassing PowerShell Execution Policy

69

I think it’s clear that this is not really something that Microsoft intends for you to do. Use (or not)
wisely at your own discretion.

Chapter 20 Starting up and Shutting down a list of VM’s in a specific order

70

Chapter 20

Starting up and Shutting
down a list of VM’s in a
specific order

By: Sean Kearney – MVP

A friend asked me if this was hard to do with PowerShell in Hyper-V. He tapped me on the back
and literally asked….

“When I have to shutdown a pile of Virtual servers for maintenance, I have a particular order they
need to shutdown in, then startup needs to be the reverse. Is there a nice easy way to do this in
PowerShell?”

So, I thought about it. We could do this with one script actually (Which is the neat bit)

First let’s keep this simple. I want a simple array of Servers. We can do this in the following
manner.

[array]$VMList=(‘Server1’,’Server2’,’Server3’,’Server4’)

With a list like this I can just step through them with PowerShell and Shutdown them in the order
provided with a simple ForEach Loop

 Foreach ($VM in $VMList)
{
Stop-VM –vm $VM
}

Now the second challenge …. REVERSING the order. I was going to try and come up something
really neat for this by getting count of elements in the array when I ran across this PowerTip from
www.scriptingguys.com on Reverse an Array with PowerShell.

So to get the REVERSE order I just pass my Array into the Reverse method like this.

[array]::reverse($VMList)

Now I can run a SIMILIAR loop to Start the Virtual Machines.

Chapter 20 Starting up and Shutting down a list of VM’s in a specific order

71

 Foreach ($VM in $VMList)
{
Start-VM –vm $VM
}

Cool. Now I just need some way to tell the script whether I starting or stopping. For this I can
just drop in a Switch as a parameter and tell it to default to Stopping until specified.

 param(
[switch]$Start=$True
)

At this point we can’t get fancy and maybe pop the $array of Servers as a parameter. With a little
IF Then Else to trap for the Switch our script looks a little like this:

 param(
[switch]$Start=$True,
[array]$VMlist=(‘Server1′,’Server2′,’Server3′,’Server4′,’Server5’)
)
if ($Stop)
{
 Foreach ($VM in $VMlist)
 {
 Stop-VM -VM $VM
 }
}
Else
{
 [array]::Reverse($vmlist)
 Foreach ($VM in $VMlist)
 {
 Start-VM -VM $VM
 }
}

Pretty neat what you can put together with just a little bit of Powershell eh?

Chapter 21 Join us at MVPDays and meet great MVP’s like this in person

72

Chapter 21

Join us at MVPDays and meet
great MVP’s like this in
person

If you liked their book, you will love to hear them in person.

Live Presentations
Dave frequently speaks at Microsoft conferences around North America, such as TechEd,
VeeamOn, TechDays, and MVPDays Community Roadshow.

Cristal runs the MVPDays Community Roadshow.

You can find additional information on the following blog:

www.checkyourlogs.net

www.mvpdays.com

Video Training
For video-based training, see the following site:

www.mvpdays.com

Live Instructor-led Classes
Dave has been a Microsoft Certified Trainer (MCT) for more than 15 years and presents
scheduled instructor-led classes in the US and Canada. For current dates and locations, see the
following sites:

 www.truesec.com

 www.checkyourlogs.net

Chapter 21 Join us at MVPDays and meet great MVP’s like this in person

73

Consulting Services
Dave and Cristal have worked with some of the largest companies in the world and have a wealth
of experience and expertise. Customer engagements are typically between two weeks and six
months. For more information, see the following site:

www.triconelite.com and www.rsvccorp.com

Chapter 21 Join us at MVPDays and meet great MVP’s like this in person

74

Twitter
Dave, Cristal, Émile, Thomas, Allan, Sean, and Ed on Twitter tweet on the following aliases:

 Dave Kawula: @DaveKawula

 Cristal Kawula: @SuperCristal1

 Émile Cabot: @Ecabot

 Thomas Rayner: @MrThomasRayner

 Allan Rafuse: @AllanRafuse

 Sean Kearney: @EnergizedTech

 Ed Wilson: @ScriptingGuy

