

Master PowerShell Tricks
Volume 3

Dave Kawula - MVP

Thomas Rayner - MVP

Allan Rafuse - MVP

Will Anderson - MVP

Mick Pletcher - MVP

Foreword by: Jeff Woolsey

iii

PUBLISHED BY

MVPDays Publishing
http://www.mvpdays.com

Copyright © 2017 by MVPDays Publishing

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any
means without the prior written permission of the publisher.

ISBN: 978-1979733137

Warning and Disclaimer

Every effort has been made to make this manual as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The authors and
the publisher shall have neither liability nor responsibility to any person or entity with respect to
any loss or damages arising from the information contained in this book.

Feedback Information

We’d like to hear from you! If you have any comments about how we could improve the quality
of this book, please don’t hesitate to contact us by visiting www.checkyourlogs.net or sending an
email to feedback@mvpdays.com.

Foreword by: Jeff Woolsey

iii

Foreword by: Jeff Woolsey

“PowerShell is awesome.” I’ve lost track of how many times I’ve heard this phrase and I never
get tired of hearing it... 😊

I remember the launch of Windows Server 2012 like it was yesterday. It was a major release with
innovation across the board in Hyper-V, Storage, Networking, Scale and Performance. Underlying
all of this innovation was one unifying investment designed to make it easier for you to harness
these technologies: PowerShell. With over 2500 PowerShell commandlets built-in, rich
automation was now in everyone’s hands. Over the years, we listened as you used PowerShell
for everything from simple repeatable tasks to complex deployments of servers, software and
services where PowerShell removed human error.

A few releases later, we’ve added over a thousand new commandlets, Desired State
Configuration (DSC), and Just Enough Administration (JEA) making PowerShell an indispensable
and valuable skill for every résumé. If you haven’t learned PowerShell yet, there’s no time like
the present. (Spoiler alert: It’s fun too…) The authors are PowerShell experts and MVPs who
teach and coach in the Microsoft community with years of experience. In addition, they have
used their learnings in the community to provide feedback to the PowerShell team and help
influence the product direction. Whether you or a seasoned user or a PowerShell newbie, you
can’t ever know too many PowerShell Tricks.

Jeff Woolsey

Windows Server/Hybrid Cloud

@wsv_guy

Acknowledgements

iv

Acknowledgements

From Dave

Cristal you are my rock and my source of inspiration. For the past 20 + years you have been
there with me every step of the way. Not only are you the “BEST Wife” in the world you are my
partner in crime. Christian, Trinity, Keira, Serena, Mickaila and Mackenzie, you kids are so patient
with your dear old dad when he locks himself away in the office for yet another book. Taking the
time to watch you grow in life, sports, and become little leaders of this new world is incredible to
watch.

Thank you, Mom and Dad (Frank and Audry) and my brother Joe. You got me started in this crazy
IT world when I was so young. Brother, you mentored me along the way both coaching me in
hockey and helping me learn what you knew about PC’s and Servers. I’ll never forget us as
teenage kids working the IT Support contract for the local municipal government. Remember
dad had to drive us to site because you weren’t old enough to drive ourselves yet. A great
career starts with the support of your family and I’m so lucky because I have all the support one
could ever want.

A book like this filled with amazing Canadian MVP’s would not be possible without the support
from the #1 Microsoft Community Program Manager – Simran Chaudry. You have guided us
along the path and helped us to get better at what we do every day. Your job is tireless and
your passion and commitment make us want to do what we do even more.

Last but not least, the MVPDays volunteers, you have donated your time and expertise and
helped us run the event in over 20 cities across North America. Our latest journey has us
expanding the conference worldwide as a virtual conference. For those of you that will read this
book your potential is limitless just expand your horizons and you never know where life will take
you.

About the Authors

v

About the Authors

Dave Kawula - MVP
Dave is a Microsoft Most Valuable Professional (MVP) with over 20 years of experience in the IT
industry. His background includes data communications networks within multi-server
environments, and he has led architecture teams for virtualization, System Center, Exchange,
Active Directory, and Internet gateways. Very active within the Microsoft technical and
consulting teams, Dave has provided deep-dive technical knowledge and subject matter
expertise on various System Center and operating system topics.

Dave is well-known in the community as an evangelist for Microsoft, 1E, and Veeam
technologies. Locating Dave is easy as he speaks at several conferences and sessions each year,
including TechEd, Ignite, MVP Days Community Roadshow, and VeeamOn.

Recently Dave has been honored to take on the role of Conference Co-Chair of TechMentor with
fellow MVP Sami Laiho. The lineup of speakers and attendees that have been to this conference
over the past 20 years is really amazing. Come down to Redmond or Orlando in 2018 and you
can meet him in person.

As the founder and Managing Principal Consultant at TriCon Elite Consulting, Dave is a leading
technology expert for both local customers and large international enterprises, providing optimal
guidance and methodologies to achieve and maintain an efficient infrastructure.

BLOG: www.checkyourlogs.net

Twitter: @DaveKawula

About the Authors

vi

Thomas Rayner - MVP
Thomas Rayner is a Microsoft Most Valuable Professional (MVP) and Honorary Scripting Guy with
many years of experience in IT. He is a master technologist, specializing in DevOps, systems and
process automation, public, private and hybrid cloud, and PowerShell. Thomas is an international
speaker, best-selling author, and instructor covering a vast array of IT topics.

Thomas works for PCL Constructors on their DevOps and Automation team. He enjoys working
with a wide variety of different products and technologies, particularly emerging and disruptive
technologies, and automation-related products. His position with PCL affords him the luxury of
facing interesting challenges every day.

BLOG: http://workingsysadmin.com

Twitter: @mrthomasrayner

About the Authors

vii

Allan Rafuse – MVP
Allan has worked as a senior member of the Windows and VMWare Platform Department at
Swedbank. He took part in the architecture and implementation of multiple datacenters in
several countries. He is responsible for the roadmap and lifecycle of the Windows Server
Environment, including the development of ITIL processes of global server OSD, configuration,
and performance.

He is an expert at scripting solutions and has an uncanny ability to reduce complexity and
maximize the functionality of PowerShell. Allan has recently rejoined the TriCon Elite Consulting
team again as a Principal Consultant.

BLOG: http://www.checkyourlogs.net

Twitter: @allanrafuse

About the Authors

viii

Will Anderson – MVP

Will Anderson is a fifteen-year infrastructure veteran with a specialization in Patch Management
and Compliance and System Center Configuration Manager. Working in environments ranging
from 80 users to over 150,000, Will has acquired a knowledge of a broad range of products and
service lines ranging from Exchange, Active Directory and GPO, to the operating system platform
and a variety of applications.

In recent years, Will has become quite the nerd about PowerShell, and blogs about the latest,
new, cool things he finds or creates to make his life as an admin and engineer easier. You can
find him on PowerShell.org as a moderator, webmaster, and occasional writer for the PowerShell
TechLetter. He is also a co-founder of the Toronto PowerShell Users’ Group (PowerShellTO),
founder of the Metro Detroit PowerShell User Group, and a member of the Association for
Windows PowerShell Professionals.

Will is a second year recipient of the Microsoft MVP award in Cloud and Datacenter
Management, and was awarded the moniker of 2015 Honorary Scripting Guy, by Ed Wilson – The
Scripting Guy, in January 2016. In October of 2016, he joined the DevOps Collective Board of
Directors.

Will also nerds out on Video Games, Cars, Photography, and Board Games. You can find him at
various places on the internet including PowerShellTO, PowerShell.org, Twitter, his personal blog
– Last Word in Nerd, and occasionally as a guest blogger on ‘Hey, Scripting Guy!’.

BLOG: http://lastwordinnerd.com

Twitter: @GamerLivingWill

About the Authors

ix

Mick Pletcher – MVP

“Mick Pletcher is a nationally respected technology expert specializing in System Center
Configuration Manager, Microsoft Deployment Toolkit, Active Directory, PowerShell Scripting,
Visual Basic Scripting and Automation. In 2017, Mick was honored as a Microsoft Most Valuable
Professional for his work in Cloud and Data Center. Also in 2017, he was one of seven IT
professionals worldwide to be recognized as a technical star with the SAPIEN MVP Award. Mick is
an avid blogger on information technology tips and topics at http://mickitblog.blogspot.com/.
His blog, which topped a million hits in less than four years, was highlighted in Adaptiva’s 2016
round-up of Top 16 SCCM Tips for 2016.

A SCCM Administrator with Waller Lansden Dortch & Davis, LLP, a Nashville-based law firm with
more than 230 attorneys in four offices, Mick deploys software to more than 500 users across
the Southeast and is responsible for automating tasks via the use of PowerShell, administering
group policies, deploying Windows updates, and the PC build process. Prior to joining Waller,
Mick implemented alternate system design approaches and managed software and Operating
Systems using SCCM 2012, along with SMS Installer, PowerShell, and VBScript at one of the
nation’s largest architecture and engineering design firms. In 2013, Mick co-founded the
Nashville PowerShell User Group. He is a relentless world traveler who has climbed Mount
Kilimanjaro. Other hobbies include astronomy, welding and fabrication, river boarding, sport
bikes, cycling and mountaineering.”

Blog: http://mickitblog.blogspot.ca

Twitter: @mick_pletcher

About the Authors

x

Technical Editors

Cristal Kawula – MVP

Cristal Kawula is the co-founder of MVPDays Community Roadshow and #MVPHour live Twitter
Chat. She was also a member of the Gridstore Technical Advisory board and is the President of
TriCon Elite Consulting. Cristal is also only the 2nd Woman in the world to receive the prestigious
Veeam Vanguard award.

Cristal can be found speaking at Microsoft Ignite, MVPDays, and other local user groups. She is
extremely active in the community and has recently helped publish a book for other Women
MVP’s called Voices from the Data Platform.

BLOG: http://www.checkyourlogs.net

Twitter: @supercristal1

About the Authors

xi

Emile Cabot - MVP

Emile started in the industry during the mid-90s working at an ISP and designing celebrity web
sites. He has a strong operational background specializing in Systems Management and
collaboration solutions, and has spent many years performing infrastructure analyses and
solution implementations for organizations ranging from 20 to over 200,000 employees.
Coupling his wealth of experience with a small partner network, Emile works very closely with
TriCon Elite, 1E, and Veeam to deliver low-cost solutions with minimal infrastructure
requirements.

He actively volunteers as a member of the Canadian Ski Patrol, providing over 250 hours each
year for first aid services and public education at Castle Mountain Resort and in the community.

BLOG: http://www.checkyourlogs.net

Twitter: @ecabot

About the Authors

xii

Cary Sun – CCIE #4531 (Future Microsoft MVP)

Cary Sun is CISCO CERTIFIED INTERNETWORK EXPERT (CCIE No.4531) and MCSE, MCIPT, Citrix
CCA with over twenty years in the planning, design, and implementation of network technologies
and Management and system integration. Background includes hands-on experience with multi-
platform, all LAN/WAN topologies, network administration, E-mail and Internet systems, security
products, PCs and Servers environment. Expertise analyzing user’s needs and coordinating
system designs from concept through implementation. Exceptional analysis, organization,
communication, and interpersonal skills. Demonstrated ability to work independently or as an
integral part of team to achieve objectives and goals. Specialties: CCIE /CCNA / MCSE / MCITP /
MCTS / MCSA / Solution Expert / CCA

Cary’s is a very active blogger at checkyourlogs.net and always available online for questions
from the community. He passion about technology is contagious and he makes everyone around
him better at what they do.

Blog:http://www.checkyourlogs.net

Twitter:@SifuSun

About the Authors

xiii

Contents

xiv

Contents

Foreword by: Jeff Woolsey .. iii

Acknowledgements .. iv

From Dave ... iv

About the Authors ... v

Dave Kawula - MVP ... v

Thomas Rayner - MVP ... vi

Allan Rafuse – MVP ... vii

Will Anderson – MVP .. viii

Mick Pletcher – MVP ... ix

Technical Editors ... x

Cristal Kawula – MVP .. x

Emile Cabot - MVP ... xi

Cary Sun – CCIE #4531 (Future Microsoft MVP) .. xii

Contents .. xiv

Introduction ... 21

North American MVPDays Community Roadshow ... 21

Sample Files ... 22

Additional Resources .. 22

Chapter 1 .. 24

Contents

xv

Using PowerShell to Download Drivers via FTP ... 24

Chapter 2 .. 28

Using PowerShell to Download Videos from Channel 9 ... 28

Chapter 3 .. 36

Snapshot Management of VMware with PowerShell ... 36

Snapshot Management .. 36

Password Issues .. 37

Report Output... 37

The Code (VMWare Example) ... 38

Chapter 4 .. 43

Setting SQL Server Memory Allocation (Maximum and Minimum) 43

Retrieving the Physical Memory ... 43

Determine SQL Server Maximum Memory ... 44

Reconfigure SQL Server Memory Allocation .. 45

Making IT Work .. 47

Chapter 5 .. 48

Using PowerShell to Add a Direct Member to an SCCM Collection 48

Chapter 6 .. 50

Using PowerShell to Manage the Datadog Cloud Service .. 50

Authentication .. 51

Example Snippets .. 51

Searching for Events .. 54

Chapter 7 .. 56

Contents

xvi

Using PowerShell to Update the .Default and All User Profiles Registry 56

Enumerate all the existing user profiles .. 56

Add the .DEFAULT user profile to the list of existing profiles 57

Iterate through all the profiles ... 57

Manipulate the users’ registry ... 58

If the Profile hive was loaded by script, unload it .. 59

Chapter 8 .. 61

Working with PowerShell Active Directory Module as a Non-Privileged User 61

Chapter 9 .. 63

Using PowerShell to Split a String Without Losing the Character You Split On 63

Chapter 10 .. 66

What's the difference between -split and .split() in PowerShell? 66

Chapter 11 .. 69

PowerShell Rules for Format-Table and Format-List .. 69

Chapter 12 .. 71

The Difference Between Get-Member and .GetType() in PowerShell 71

Chapter 13 .. 74

Dynamically Create Preset Tests for PowerShell .. 74

Chapter 14 .. 78

Piping PowerShell Output into Bash .. 78

Chapter 15 .. 79

How to List All the Shares on a Server using PowerShell .. 79

Contents

xvii

Chapter 16 .. 82

Get a ServiceNow User Using PowerShell... 82

Chapter 17 .. 84

Add a Work Note to a ServiceNow Incident with PowerShell 84

Chapter 18 .. 87

Use PowerShell to see how many items are in a Directory 87

Chapter 19 .. 88

Add a Column to a CSV using PowerShell .. 88

Chapter 20 .. 91

Diagnosing slow PowerShell Load Times ... 91

Chapter 21 .. 92

Use Test-NetConnection in PowerShell to see if a Port is Open 92

Chapter 22 .. 93

Use PowerShell to find out How Long it is until Christmas...................................... 93

Chapter 23 .. 95

Use PowerShell to Figure out “What day of the week” x number of days from now
 .. 95

Chapter 24 .. 97

Using Get-Member to Explore Objects .. 97

Chapter 25 .. 100

Using Select-Object to Explore Objects .. 100

Contents

xviii

Chapter 26 .. 105

Can PowerShell Parameters Belong to Multiple Sets? ... 105

Chapter 27 .. 107

Opening an Exchange Online Protection Shell ... 107

Chapter 28 .. 109

Import Active Directory Module into Windows PE .. 109

Chapter 29 .. 121

Using PowerShell to report on Windows Updates installed during MDT OSD Build
 .. 121

Chapter 30 .. 131

Report on Mapped Drives to understand Cryptolocker Vulnerabilities with SCCM
and PowerShell .. 131

Chapter 31 .. 142

Set Windows Features and Verify with PowerShell .. 142

Chapter 32 .. 149

Uninstall an Application by Name with PowerShell .. 149

Chapter 33 .. 152

Azure Automatic Account Creation and Adding Modules using PowerShell........ 152

Creating the Azure Automation Account ... 152

Creating a Blob Container in AzureRM ... 154

Upload a Blob Container ... 156

Chapter 34 .. 158

Contents

xix

Configuring Azure Automation Runbooks and Understanding Webhook Data using
PowerShell ... 158

Creating the Runbook Script ... 159

Publish the Runbook ... 161

Create an Alert .. 162

Validating our Data ... 166

Chapter 35 .. 170

Utilizing Webhook Data in Functions and Validate Results using PowerShell 170

Building on Webhook Data .. 170

Chapter 36 .. 181

Adding Configuration to your Azure Automation Account using Azure DSC 181

Push vs. Pull ... 182

Pros and Cons to Each ... 183

Things to Consider .. 184

Upload the Configuration .. 187

Compile the Configuration... 190

Chapter 37 .. 195

Onboarding Automation DSC Endpoints and Reporting .. 195

Register the Virtual Machine ... 196

Apply a Configuration .. 198

Azure Automation DSC Reports.. 200

Connecting to Log Analytics .. 202

Chapter 38 .. 207

Publishing Configurations and Pushing them with Azure DSC 207

Contents

xx

Publish the Configuration .. 207

Install the VM Extensions .. 209

Chapter 39 .. 214

Testing RDMA Connectivity with PowerShell .. 214

Chapter 40 .. 225

Storage Spaces Direct Network Reporting HTML Script for Mellanox Adapters via
PowerShell ... 225

Chapter 41 .. 229

Using PowerShell and DSC to build out an RDSH Farm from Scratch 229

Chapter 42 .. 250

Join us at MVPDays and meet great MVP’s like this in person 250

Live Presentations .. 250

Video Training ... 250

Live Instructor-led Classes .. 251

Consulting Services .. 251

Twitter ... 252

Introduction North American MVPDays Community Roadshow

21

Introduction

North American MVPDays
Community Roadshow

The purpose of this book is to showcase the amazing expertise of our guest speakers at the
North American MVPDays Community Roadshow. They have so much passion, expertise, and
expert knowledge that it only seemed fitting to write it down in a book.

MVPDays was founded by Cristal and Dave Kawula back in 2013. It started as a simple idea;
“There’s got to be a good way for Microsoft MVPs to reach the IT community and share their
vast knowledge and experience in a fun and engaging way” I mean, what is the point in
recognizing these bright and inspiring individuals, and not leveraging them to inspire the
community that they are a part of.

We often get asked the question “Who should attend MVPDays”?

Anyone that has an interest in technology, is eager to learn, and wants to meet other like-
minded individuals. This Roadshow is not just for Microsoft MVP’s it is for anyone in the IT
Community.

Make sure you check out the MVPDays website at: www.mvpdays.com. You never know maybe
the roadshow will be coming to a city near you.

The goal of this particular book is to give you some amazing Master PowerShell tips from the
experts you come to see in person at the MVPDays Roadshow. Each chapter is broken down
into a unique tip and we really hope you find some immense value in what we have written.

Introduction North American MVPDays Community Roadshow

22

Sample Files
All sample files for this book can be downloaded from www.checkyourlogs.net and
www.github.com/mvpdays

Additional Resources
In addition to all tips and tricks provided in this book, you can find extra resources like articles
and video recordings on our blog http://www.checkyourlogs.net.

Introduction North American MVPDays Community Roadshow

23

Chapter 1 Using PowerShell to Download Drivers via FTP

24

Chapter 1

Using PowerShell to
Download Drivers via FTP

By: Dave Kawula MVP

Hey fellow IT Pro’s in today’s blog post we will look at a super quick and dirty way to download
files from your favorite FTP Site.

Luckily there is already an FTP Module up in the PowerShell Gallery that we will use for this
called PSFTP.

I currently use this little trick to download the current supported drivers for our Storage Spaces
Direct builds on SuperMicro hardware.

install-module PSFTP -Force

Import-Module -Name PSFTP

$username = "anonymous"

$password = "anonymous"

$secstr = New-Object -TypeName System.Security.SecureString

$password.ToCharArray() | ForEach-Object {$secstr.AppendChar($_)}

$cred = new-object -typename System.Management.Automation.PSCredential -
argumentlist $username, $secstr

Set-FTPConnection -Credentials $Cred -Server ftp://ftp.supermicro.com -Session
DownloadingDrivers -UsePassive

$Session = Get-FTPConnection -Session DownloadingDrivers

Chapter 1 Using PowerShell to Download Drivers via FTP

25

Get-FTPItem -Session $Session -Path
/driver/SATA/Intel_PCH_RAID_Romley_RSTE/Management/5.0.0.2192/IATA_CD.exe -
LocalPath "c:\post-install\SuperMicroDrivers" -RecreateFolders -Overwrite

Get-FTPItem -Session $Session -Path /driver/VGA/ASPEED/v1.03.zip -LocalPath
"c:\post-install\SuperMicroDrivers" -RecreateFolders -Overwrite

Get-FTPItem -Session $Session -Path
/driver/SATA/Intel_PCH_RAID_Romley_RSTE/Windows/5.0.0.2192/Win.zip -
RecreateFolders -Overwrite

Get-FTPItem -Session $Session -Path /driver/LAN/Intel/PRO_v22.4.zip -
RecreateFolders -Overwrite

Get-FTPItem -Session $Session -Path
/driver/SATA/Intel_PCH_RAID_Romley_RSTE/Management/5.0.0.2192/rste_5.0.0.2192_cl
i.zip -LocalPath "c:\post-install\SuperMicroDrivers" -RecreateFolders -Overwrite

Get-FTPItem -Session $Session -Path
/driver/SATA/Intel_PCH_RAID_Romley_RSTE/Management/5.0.0.2192/rste_5.0.0.2192_in
stall.zip -LocalPath "c:\post-install\SuperMicroDrivers" -RecreateFolders -
Overwrite

Get-FTPItem -Session $Session -Path
/driver/SATA/Intel_PCH_RAID_Romley_RSTE/Windows/5.0.0.2192/rste_5.0.0.2192_f6-
drivers.zip -LocalPath

PS C:\temp> install-module PSFTP -Force

Import-Module -Name PSFTP

$username = "anonymous"

$password = "anonymous"

$secstr = New-Object -TypeName System.Security.SecureString

$password.ToCharArray() | ForEach-Object {$secstr.AppendChar($_)}

$cred = new-object -typename System.Management.Automation.PSCredential -
argumentlist $username, $secstr

Set-FTPConnection -Credentials $Cred -Server ftp://ftp.supermicro.com -Session
DownloadingDrivers -UsePassive

$Session = Get-FTPConnection -Session DownloadingDrivers

Get-FTPItem -Session $Session -Path
/driver/SATA/Intel_PCH_RAID_Romley_RSTE/Management/5.0.0.2192/IATA_CD.exe -
LocalPath "c:\post-install\SuperMicroDrivers" -RecreateFolders -Overwrite

Chapter 1 Using PowerShell to Download Drivers via FTP

26

Get-FTPItem -Session $Session -Path /driver/VGA/ASPEED/v1.03.zip -LocalPath
"c:\post-install\SuperMicroDrivers" -RecreateFolders -Overwrite

Get-FTPItem -Session $Session -Path
/driver/SATA/Intel_PCH_RAID_Romley_RSTE/Windows/5.0.0.2192/Win.zip -
RecreateFolders -Overwrite

Get-FTPItem -Session $Session -Path /driver/LAN/Intel/PRO_v22.4.zip -
RecreateFolders -Overwrite

Get-FTPItem -Session $Session -Path
/driver/SATA/Intel_PCH_RAID_Romley_RSTE/Management/5.0.0.2192/rste_5.0.0.2192_cl
i.zip -LocalPath "c:\post-install\SuperMicroDrivers" -RecreateFolders -Overwrite

Get-FTPItem -Session $Session -Path
/driver/SATA/Intel_PCH_RAID_Romley_RSTE/Management/5.0.0.2192/rste_5.0.0.2192_in
stall.zip -LocalPath "c:\post-install\SuperMicroDrivers" -RecreateFolders -
Overwrite

Get-FTPItem -Session $Session -Path
/driver/SATA/Intel_PCH_RAID_Romley_RSTE/Windows/5.0.0.2192/rste_5.0.0.2192_f6-
drivers.zip -LocalPath

ContentLength : -1

Headers : {}

SupportsHeaders : True

ResponseUri : ftp://ftp.supermicro.com/

StatusCode : ClosingData

StatusDescription : 226 Successfully transferred "/"

LastModified : 1/1/0001 12:00:00 AM

BannerMessage : 220 Welcome To Supermicro FTP Site

WelcomeMessage : 230 Logged on

ExitMessage : 221 Goodbye

IsFromCache : False

IsMutuallyAuthenticated : False

Chapter 1 Using PowerShell to Download Drivers via FTP

27

ContentType :

I hope you enjoy this and the rest of the tricks throughout this book.

Dave

Chapter 2 Using PowerShell to Download Videos from Channel 9

28

Chapter 2

Using PowerShell to
Download Videos from
Channel 9

By: Dave Kawula MVP

Today I want to feature a really cool little PowerShell Script to download your favorite content
from Microsoft Channel 9 @CH9. As I do most days at lunch I scour the internet for great IT
News, Blog Posts, and cool tricks to help me with my day job. Today I was browsing my friend
Vlad Catrinescu’s @vladcatrinescu blog: https://absolute-sharepoint.com/ and I found this
amazing post…

https://absolute-sharepoint.com/2017/05/the-ultimate-script-to-download-microsoft-build-
2017-videos-and-slides.html

Basically, it can be used as a downloader for any Channel 9 content from Microsoft. Sometimes
it is nice to have offline content for when you are on the plane and this one really does the trick.

Now the code you see below is slightly modified as I thought it would be cool to download all the
@MVPDays 2017 content.

Chapter 2 Using PowerShell to Download Videos from Channel 9

29

#Script written by Vlad Catrinescu

#Visit my site www.absolute-sharepoint.com

#Twitter: @vladcatrinescu

#Originally Posted here: https://wp.me/p3utgI-865

#Slight Modifications to work with MVPDays Community Roadshow Content on Channel
9

#by Dave Kawula - MVP

#@DaveKawula

#Nice work VLAD -- This might make Master PowerShell Tricks V3 :)

Param(

 [string]$keyword,[string]$session

)

Variables #####

#Location - Preferably enter something not too long to not have filename
problems! cut and paste them afterwards

$downloadlocation = "G:\MVPDays2017"

#Ignite 2016 Videos RSS Feed

[Environment]::CurrentDirectory=(Get-Location -PSProvider
FileSystem).ProviderPath

$rss = (new-object net.webclient)

$video1 =
([xml]$rss.downloadstring("http://s.ch9.ms/events/MVPDays/MVPDays2017RoadShow/rs
s/mp4high"))

$video2 =
([xml]$rss.downloadstring("http://s.ch9.ms/events/MVPDays/MVPDays2017RoadShow/rs
s/mp4high?page=2"))

#other qualities for the videos only. Uncomment below and delete the two
previous lines to download Mid Quality videos

#$video1 =
([xml]$rss.downloadstring("http://s.ch9.ms/events/build/2017/rss/mp4"))

#$video2 =
([xml]$rss.downloadstring("http://s.ch9.ms/events/build/2017/rss/mp4?page=2"))

Chapter 2 Using PowerShell to Download Videos from Channel 9

30

$slide1 =
([xml]$rss.downloadstring("http://s.ch9.ms/events/MVPDays/MVPDays2017RoadShow/rs
s/slides"))

$slide2 =
([xml]$rss.downloadstring("http://s.ch9.ms/events/MVPDays/MVPDays2017RoadShow/rs
s/slides?page=2"))

#SCRIPT/ Functions Do not touch below this line :)#

if (-not (Test-Path $downloadlocation)) {

 Write-Host "Folder $fpath dosen't exist. Creating it..."

 New-Item $downloadlocation -type directory | Out-Null

}

set-location $downloadlocation

function CleanFilename($filename)

{

 return $filename.Replace(":", "-").Replace("?", "").Replace("/", "-
").Replace("<", "").Replace("|", "").Replace('"',"").Replace("*","")

}

function DownloadSlides($filter,$videourl)

{

 try

 {

 $videourl.rss.channel.item | Where{($_.title -like “*$filter*”) -or
($_.link -like "*/$filter")} |

 foreach {

 $code = $_.comments.split("/") | select -last 1

 # Grab the URL for the PPTX file

 $urlpptx = New-Object System.Uri($_.enclosure.url)

 $filepptx = $code + "-" + $_.creator + "-" +
(CleanFileName($_.title))

 $filepptx = $filepptx.substring(0, [System.Math]::Min(120,
$filepptx.Length))

Chapter 2 Using PowerShell to Download Videos from Channel 9

31

 $filepptx = $filepptx.trim()

 $filepptx = $filepptx + ".pptx"

 if ($code -ne "")

 {

 $folder = $code + " - " + (CleanFileName($_.title

 $folder = $folder.substring(0, [System.Math]::Min(100, $folder.Length))

 $folder = $folder.trim()

 }

 else

 {

 $folder = "NoCodeSessions"

 }

 if (-not (Test-Path $folder)) {

 Write-Host "Folder $folder dosen't exist. Creating it..."

 New-Item $folder -type directory | Out-Null

 }

 # Make sure the PowerPoint file doesn't already exist

 if (!(test-path "$downloadlocation\$folder\$filepptx"))

 {

 # Echo out the file that's being downloaded

 write-host "Downloading slides: $filepptx"

 #$wc = (New-Object System.Net.WebClient)

 # Download the MP4 file

 #$wc.DownloadFile($urlpptx, "$downloadlocation\$filepptx")

 Start-BitsTransfer $urlpptx "$downloadlocation\$filepptx" -
DisplayName $filepptx

 mv $filepptx $folder

 }

 else

 {

Chapter 2 Using PowerShell to Download Videos from Channel 9

32

 write-host "Slides exist: $filepptx"

 }

 }

}

 catch

 {

 $ErrorMessage = $_.Exception.Message

 Write-host "$ErrorMessage"

 }

}

function DownloadVideos($filter,$slideurl)

{

#download all the mp4

Walk through each item in the feed

$slideurl.rss.channel.item | Where{($_.title -like “*$filter*”) -or ($_.link -
like "*/$filter*")} | foreach{

$code = $_.comments.split("/") | select -last 1

Grab the URL for the MP4 file

$url = New-Object System.Uri($_.enclosure.url)

Create the local file name for the MP4 download

$file = $code + "-" + $_.creator + "-" + (CleanFileName($_.title))

$file = $file.substring(0, [System.Math]::Min(120, $file.Length))

$file = $file.trim()

$file = $file + ".mp4"

if ($code -ne "")

{

Chapter 2 Using PowerShell to Download Videos from Channel 9

33

 $folder = $code + " - " + (CleanFileName($_.title))

 $folder = $folder.substring(0, [System.Math]::Min(100, $folder.Length))

 $folder = $folder.trim()

}

else

{

 $folder = "NoCodeSessions"

}

if (-not (Test-Path $folder)) {

 Write-Host "Folder $folder) dosen't exist. Creating it..."

 New-Item $folder -type directory | Out-Null

}

Make sure the MP4 file doesn't already exist

 if (!(test-path "$folder\$file"))

{

 # Echo out the file that's being downloaded

 write-host "Downloading video: $file"

 #$wc = (New-Object System.Net.WebClient)

 # Download the MP4 file

 Start-BitsTransfer $url "$downloadlocation\$file" -DisplayName $file

 mv $file $folder

}

 else

 {

 write-host "Video exists: $file"

 }

Chapter 2 Using PowerShell to Download Videos from Channel 9

34

#text description from session

$OutFile = New-Item -type file
"$($downloadlocation)\$($Folder)\$($Code.trim()).txt" -Force

 $Category = "" ; $Content = ""

 $_.category | foreach {$Category += $_ + ","}

 $Content = $_.title.trim() + "`r`n" + $_.creator + "`r`n" +
$_.summary.trim() + "`r`n" + "`r`n" + $Category.Substring(0,$Category.Length -1)

 add-content $OutFile $Content

}

}

 if ($keyword)

{

 $keywords = $keyword.split(",")

 foreach ($k in $keywords)

 {

 $k.trim()

 Write-Host "You are now downloading the sessions with the keyword $k"

 DownloadSlides $k $slide1

 DownloadSlides $k $slide2

 DownloadVideos $k $video1

 DownloadVideos $k $video2

 }

}

elseif ($session)

{

 $sessions = $session.Split(",")

 foreach ($s in $sessions)

Chapter 2 Using PowerShell to Download Videos from Channel 9

35

 {

 $s.trim()

 Write-Host "You are now downloading the session $s"

 DownloadSlides $s $slide1

 DownloadSlides $s $slide2

 DownloadVideos $s $video1

 DownloadVideos $s $video2

 }

}

else

{

 DownloadSlides " " $slide1

 DownloadSlides " " $slide2

 DownloadVideos " " $video1

 DownloadVideos " " $video2

}

Hope you enjoy and happy learning,

Dave

Chapter 3 Snapshot Management of VMware with PowerShell

36

Chapter 3

Snapshot Management of
VMware with PowerShell

By: Allan Rafuse MVP

This is one of those management tasks that comes up at any location you’re at, especially when
you’re trying to manage VMs, performance or datastore space. The cleanup task of deleting
snapshots is easy, but the questions that always comes to mind are: Who created it, when and
why. Take a look at a quick script I wrote to answer that information. I schedule it to run every
Monday morning and email the results. Simple! This framework works for both VMware and
Hyper-V.

Snapshot Management

As I mentioned above, it’s easy to delete the snapshot, but why was it created. It would be great
if everyone put in meaningful names, a descriptive description, and also told us when we could
delete the snapshot. The longer we leave snapshots, the more we are going to degrade
performance, not only to the VM itself, but as the snapshot grows, it will take extra cycles away
from the hosts to serve up the required data.

Snapshots should really only be used as a Cover Your A** (CYA). Essentially:

1. Take a snapshot

2. Make a change to the VM (Upgrade, Patch)

3. Test the change

4. Make a choice

a. Changes are good, delete the snapshot

b. Changes failed, revert and delete the snapshot

Chapter 3 Snapshot Management of VMware with PowerShell

37

Reality – I’ll just keep the snapshot for a few days in case someone finds an issue.

Password Issues

Ever keep that snapshot for over 30 days? Well if you revert a Windows machine to snapshot
that is older than 30 days, you’re most likely going to have machine password authentication
problems with the domain. By default, machine account password changes are initiated by the
computer every 30 days. So that means when you go to log into the machine, the trust between
the machine and AD is broken.

To get around this issue, you can try the following options:

1. Log on with a local account

2. Disconnect the network adapter, log on with a domain account with cached credentials

Now if there are legitimate reasons for retaining snapshots for a length of time (Packaging
machines, Gold Images etc), you may want to look at the following security option (via local
security editor or group policy)

Setting: Domain member: Maximum machine account password age

Location: Computer Configuration\Windows Settings\Security Settings\Local Policies\Security
Options

Report Output

Here is a sample of what the PowerShell script will create.

Chapter 3 Snapshot Management of VMware with PowerShell

38

The Code (VMWare Example)

The code itself for reporting is pretty simple and short. The script I have is larger cause I try and
write all my useful scripts with script parameters, and in this case the code is a little larger as I
kick it out to email.

Parameters

The parameters are pretty straight forward. Which virtual center machine are we going to
connect to, how to send an email, and most importantly, only email machines that are older than
X days (14 by default).

param (

 $VirtualCenter = "VirtualCenter.corp.local",

 $smtpServer = "smtp1.corp.local",

 $smtpFrom = "vmware@corp.local",

 $smtpTo = "arafuse@corp.local",

Chapter 3 Snapshot Management of VMware with PowerShell

39

 $smtpSubject = "VMware Snapshots",

 $SnapShotsOlderThanXDays = 14

)

Connect to Virtual Center

Next step is to connect to Virtual Center

Get-Module -ListAvailable VMware.VimAutomation.* | Import-Module -ErrorAction
SilentlyContinue

If ($global:DefaultVIServer) {

 Disconnect-VIServer * -Confirm:$false -ErrorAction SilentlyContinue

}

$VCServer = Connect-VIServer -Server $VirtualCenter

Get and Create the Snapshot Report

Here is the worker code of this script. Some VMs are allowed to have snapshots, so we define a
list of regular expressions to filter out. The next one is some of the secret sauce to figuring out
who created the snapshot. To do this we need to go back through the VM events and look for
the Create Snapshot even. From here we can determine who created the snapshot. To help limit
the speed, we know what time the snapshot was created, so this code is going to look at the past
4000 events for that VM starting 10 seconds before the snapshot was created.

As I sometimes run this code interactively, I first create a report with all the snapshots regardless
of the date created (excluding the allowed VM with snapshots). This allows me to see everything.
But during script execution, I then filter out anything older than 14 days. Those are the culprits I
want to delete!

$VmsWithAllowedSnaps = @(".*SnappyImage.*")

$LogEntriesPerVM = 4000

Chapter 3 Snapshot Management of VMware with PowerShell

40

$VMs = Get-VM

Foreach ($VmsWithAllowedSnap in $VmsWithAllowedSnaps) {

 $VMs = $VMs | Where {$_.Name -notmatch $VmsWithAllowedSnap}

}

$SnapShots = $VMs | Get-Snapshot

$date = Get-Date

$measure = Measure-Command {

 $report = $Snapshots | Select-Object VM, Name, @{Name="User"; Expression = {
(Get-VIEvent -Entity $_.VM -MaxSamples $LogEntriesPerVM -Start
$_.Created.AddSeconds(-10) | Where {$_.Info.DescriptionId -eq
"VirtualMachine.createSnapshot"} | Sort-Object CreatedTime | Select-Object -
First 1).UserName}}, Created, @{Name="Days Old"; E={$_.Created - }}, Description
| Sort-Object -Property "Created"

}

#($measure).TotalMinutes

$report = $report | Where {($_.Created).AddDays([int]$SnapShotsOlderThanXDays) -
lt (Get-Date)}

Email the Results

Scripts are great! Scripts that email you the results are even greater! You can use this generic
fragment of code almost anywhere. It takes your $report object, put it into an HTML table and
emails it! If you don’t like the colors, there are many things you can do in the $head block below
by adding/modifying CSS styles.

$head = @"

<title>Snapshot Daily/Weekly Report</title>

<style type="text/css">

Chapter 3 Snapshot Management of VMware with PowerShell

41

 body { background-color: white; }

 table { border-width: 1px; border-style: solid; border-color: black; border-
collapse: collapse; }

 th {border-width: 1px; padding: 0px; border-style: solid; border-color: black;
background-color:thistle }

 td {border-width: 1px ;padding: 0px; border-style: solid; border-color: black;
}

 tr:nth-child(odd) { background-color:#d3d3d3; }

 tr:nth-child(even) { background-color:white; }

</style>

"@

$postContent = @"

<p>Number of Snapshots: $($report.count)</p>

<p>Generated on $($ENV:COMPUTERNAME)</p>

"@

#Send Email Report

$date = Get-Date

$message = New-Object System.Net.Mail.MailMessage $smtpFrom, $smtpTo

$message.Subject = $smtpSubject

$message.IsBodyHTML = $true

$SnapshotReportHTML = $report | ConvertTo-Html -Head $head -PreContent "Report
Date: $date" -PostContent $PostContent

$message.Body = $SnapshotReportHTML | Out-String

$smtp = New-Object Net.Mail.SmtpClient($smtpServer)

$smtp.Send($message)

Schedule It

You’ll see me type this over and over. I schedule this script to run on Monday mornings. This way
when I come into the office, there is a report sitting in people’s mailboxes. It’s clean up time!

Chapter 3 Snapshot Management of VMware with PowerShell

42

Happy Snapshot Management!

Allan

Chapter 4 Setting SQL Server Memory Allocation (Maximum and Minimum)

43

Chapter 4

Setting SQL Server Memory
Allocation (Maximum and
Minimum)

By: Allan Rafuse MVP

If you’ve ever run an installation of SQL Server, you’ll know it’s a database, and databases love,
love, love memory. By design and by default, Microsoft SQL Server thinks it’s the only process on
the system and is therefore given all the available memory and CPUs. As a best practice, I limit
this. Here is the script I use to edit these values.

The first thing to know is how much memory/RAM the server has been allocated or has installed.
SQL Server will be happy to use it all as we all know, but sadly, SQL Server isn’t the only process
running. Depending on the organization, the environment, there are other processes running
alongside of SQL Server. Think about AV and Backup software. Oh, did you forget about one of
the most important areas of the system that needs memory available? This is the Operating
System itself! Your performance will surely start to tank if your OS runs out of memory and starts
to swap.

Another process that could be running on the SQL Server machine, is another instance of SQL
Server! There are many reasons and implementations where multiple instances run on the same
machine. It’s not nice when one instance uses all the memory and the other instances don’t get
what they need!

Retrieving the Physical Memory

Chapter 4 Setting SQL Server Memory Allocation (Maximum and Minimum)

44

To keep the code clean, I’ve put this in a function. The function will return the amount of physical
memory in Megabytes.

Function Get-ComputerMemory {

 $mem = Get-WMIObject -class Win32_PhysicalMemory |

Measure-Object -Property Capacity -Sum

 return ($mem.Sum / 1MB);

}

Determine SQL Server Maximum Memory

Now that we know how much memory is in the system, it’s time to make some choices on how
much SQL Server will be allowed to use. These numbers have worked for me and can be found in
most of my SQL Server implementations.

My calculations for how much memory to allow SQL Server to use are:

1. If the computer has less than 8GB of physical memory, allocate 80% of it to SQL Server
and leave 20% for the OS and other applications

2. If the computer has more than 8GB of physical memory, reserve 2GB for the OS and
other applications. SQL Server will get the remaining amount

This are my numbers that I use. And just because I’m sharing my #PowerShell code, doesn’t
mean that you have to use every piece of code, character by character!

Function Get-SQLMaxMemory {

 $memtotal = Get-ComputerMemory

 $min_os_mem = 2048 ;

 if ($memtotal -le $min_os_mem) {

 Return $null;

 }

Chapter 4 Setting SQL Server Memory Allocation (Maximum and Minimum)

45

 if ($memtotal -ge 8192) {

 $sql_mem = $memtotal - 2048

 } else {

 $sql_mem = $memtotal * 0.8 ;

 }

 return [int]$sql_mem ;

}

Reconfigure SQL Server Memory Allocation

This code is pretty straight forward, but SQL Server doesn’t have too many PowerShell cmdlets
for us. To reconfigure the memory allocations, we have to use SQL Server Management Objects
(SMO). To access SMO and pull it into our PowerShell world, we access them via .the NET
Framework class. Once the class is loaded into our environment, we can then create native
PowerShell objects. Pretty cool I’d say!

Function Set-SQLInstanceMemory {

 param (

 [string]$SQLInstanceName = ".",

 [int]$maxMem = $null,

 [int]$minMem = 0

)

 if ($minMem -eq 0) {

 $minMem = $maxMem

 }

 [reflection.assembly]::LoadWithPartialName("Microsoft.SqlServer.Smo") | Out-
Null

Chapter 4 Setting SQL Server Memory Allocation (Maximum and Minimum)

46

 $srv = New-Object
Microsoft.SQLServer.Management.Smo.Server($SQLInstanceName)

 if ($srv.status) {

 Write-Host "[Running] Setting Maximum Memory to:
$($srv.Configuration.MaxServerMemory.RunValue)"

 Write-Host "[Running] Setting Minimum Memory to:
$($srv.Configuration.MinServerMemory.RunValue)"

 Write-Host "[New] Setting Maximum Memory to: $maxmem"

 Write-Host "[New] Setting Minimum Memory to: $minmem"

 $srv.Configuration.MaxServerMemory.ConfigValue = $maxMem

 $srv.Configuration.MinServerMemory.ConfigValue = $minMem

 $srv.Configuration.Alter()

 }

}

Note: These changes take place immediately. See https://docs.microsoft.com/en-
us/sql/database-engine/configure-windows/server-memory-server-configuration-options

The min server memory and max server memory options are advanced options. If you are using
the sp_configure system stored procedure to change these settings, you can change them only
when show advanced options is set to 1. These settings take effect immediately without a server
restart.

The previous link also has a lot of great information about memory allocation.

Chapter 4 Setting SQL Server Memory Allocation (Maximum and Minimum)

47

Making IT Work

Now that we’ve defined a whole 2 functions, we need to call them. I actually put them into one
line. Looks better and cleaner in my opinion

$MSSQLInstance = "sql01\SQLInstance01"

Set-SQLInstanceMemory $MSSQLInstance (Get-SQLMaxMemory)

Hope you enjoyed and happy scripting.

Allan

Chapter 5 Using PowerShell to Add a Direct Member to an SCCM Collection

48

Chapter 5

Using PowerShell to Add a
Direct Member to an SCCM
Collection

By: Allan Rafuse MVP

I was working at a client site and was going through their server rollout procedure. I was quite
shocked as to how many manual tasks they still had. One of these tasks was to add a computer
directly to a SCCM collection. According to their requirements, they had to use direct
membership and could not do a WMI call. So, I created the following script and added it to their
task sequence.

Problem –

The task sequence runs on the client machine and we really don’t want to install the SCCM
PowerShell cmdlets on every server. Instead, what we’ll do is we’ll run the PowerShell remotely.
The computer that is running the task sequence will open a remote connect and run them
against the SCCM server. The SCCM server has the ConfigureManager PowerShell module, it can
do the work for us!

Things to think about –

 The computer running the task sequence needs to be able to use PowerShell remoting

 Firewall’s are opened

 SCCM Server has had Windows Remote Shell enabled

 The account that runs it must have access to update the collection

 Using PowerShell to Add a Direct Member to an SCCM Collection

49

$SccmServer = "SCCM01"

$PathToSCCMModule = "D:\Program Files\Microsoft Configuration
Manager\AdminConsole\bin\ConfigurationManager.psd1"

$MemberName = $env:COMPUTERNAME

$SCCMSession = New-PSSession -ComputerName $SccmServer

Invoke-Command -Session $SccmSession -ArgumentList @($PathToSCCMModule,
$MemberName) -ScriptBlock {

 Param (

 [string]$PathToSCCMModule,

 [string]$MemberName

)

 Import-Module $PathToSCCMModule -ErrorAction SilentlyContinue

 $SccmSite = (Get-PSDrive -PSProvider CMSite | Sort-Object -Property Name |
Select-Object -First 1).Name

 Set-Location "$($SccmSite):"

 $ResourceID = (Get-CMDevice -Name $MemberName).ResourceID

 If ($ResourceID) {

 Add-CMDeviceCollectionDirectMembershipRule -CollectionName "SCEP -
Servers" -ResourceId $ResourceID

 }

}

Until next time happy scripting.

Allan

Chapter 6 Using PowerShell to Manage the Datadog Cloud Service

50

Chapter 6

Using PowerShell to Manage
the Datadog Cloud Service

By: Allan Rafuse MVP

PowerShell to the rescue again! Datadog is a Cloud service for aggregating real-time metrics,
events and logs from all your servers. The easiest way is to install an agent and let it report via
HTTPS directly to the internet or via a web proxy. Another cloud aggregation solution that I’m
more familiar with is Microsoft Operations Management Suite (OMS). Both of these services
provide access via PowerShell.

Anyways, back to the actual blog post as you’ve probably come across this searching for Datadog
and PowerShell! Datadog doesn’t provide a PowerShell module directly, but it does expose a lot
of functionality via web services. There are a few authentication prerequisites that you need to
do inside the Datadog portal though before you go ahead and attempt to communicate with the
API.

1. Create an API-Key

2. Create an Application Key

Everyone connects to Datadog using their public URL, but instead of using a Username and
Password combination, they’ve termed them API-Key and Application Key. Using these two
together gives you access to your Datadog subscription and information.

Everyone connects to Datadog using their public URL, but instead of using a Username and
Password combination, they’ve termed them API-Key and Application Key. Using these two
together gives you access to your Datadog subscription and information.

Datadog publishes API documentation at http://docs.datadoghq.com/api/ . It has examples in
Shell, Python and Ruby. Click on the area you want to see the API for and then click on the

Chapter 6 Using PowerShell to Manage the Datadog Cloud Service

51

desired language. As the Shell method is the closest to HTTPS web service calls, I suggest you use
that in order to understand the Datadog API and web service call.

Windows PowerShell comes to the rescue again. Not only can we do a web service call using
Invoke-WebRequest , we can also deal with the Datadog response. This response will be in a
JSON format (Essentially a less complex/verbose form of XML). We’ll use PowerShell’s
ConvertFrom-Json cmdlet to create our handy PowerShell object.

Authentication

At the top of all my Datadog scripts I have the API and authentication information:

http://docs.datadoghq.com/api/#embeds

$url_base = "https://app.datadoghq.com/"

$api_key = "asdlfk771ja8z8m0980asz8knnn5f9a9"

$app_key = "x5jaja81jamnz81o85618fcce8a891912387a7f3"

Example Snippets

Below are a few snippets to get you going with Datadog. Most of the changes in each of the
snippets are in the $url_signature line. This tells Datadog what information your actually after.
Watch out as not all the API calls use api/v1, some may be api/v2.

After you prepare your URL line and parameters, you send it via Invoke-WebRequest and tell
PowerShell to set the content type as JSON. Parse your way through $response.Content and find
the relevant information you want.

Pulling Authenticated Users

#Users

$url_signature = "api/v1/user"

Chapter 6 Using PowerShell to Manage the Datadog Cloud Service

52

$url = $url_base + $url_signature + "?api_key=$api_key" + "&" +
"application_key=$app_key"

$response = Invoke-WebRequest -ContentType "application/json" -Uri $url

$response.Content | ConvertFrom-Json | Select-Object -ExpandProperty Users

Muting a Host

Mute

$url_signature = "api/v1/host/MyHostName1/mute"

$url = $url_base + $url_signature + "?api_key=$api_key" + "&" +
"application_key=$app_key"

$response = Invoke-WebRequest -Uri $url -Method Post

$response.Content | ConvertFrom-Json

Unmuting a Host

Unmute

$url_signature = "api/v1/host/WMAPMTSTEST/unmute"

$url = $url_base + $url_signature + "?api_key=$api_key" + "&" +
"application_key=$app_key"

$response = Invoke-WebRequest -Uri $url -Method Post

$response.Content | ConvertFrom-Json

Display Host/Agent Details

$includeInfo = @(

Chapter 6 Using PowerShell to Manage the Datadog Cloud Service

53

 "with_apps=true",

 "with_sources=true",

 "with_aliases=true",

 "with_meta=true",

 "with_mute_status=true",

 "with_tags=true"

)

$metricInfo = @(

 "metrics=avg",

 "system.cpu.idle avg",

 "aws.ec2.cpuutilization avg",

 "vsphere.cpu.usage avg",

 "azure.vm.processor_total_pct_user_time avg",

 "system.cpu.iowait avg",

 "system.load.norm.15"

)

$url_query = ""

$url_signature = "reports/v2/overview"

$url = $url_base + $url_signature + "?api_key=$api_key" + "&" +
"application_key=$app_key" + "&" + "window=3h" + "&" + (($metricInfo -
join "%3A") -replace " ", "%2C") + "&" + ($includeInfo -join "&")

if ($url_query) {

 $url += "&" + $url_query

}

$response = Invoke-WebRequest -Uri $url -Method Get

$response.Content | ConvertFrom-Json | Select-Object -ExpandProperty rows |
Select-Object Host_name, @{n="Actively_Reporting"; e={$_.has_metrics}},
@{n="Agent_Version"; e={$_.meta.Agent_version}}, @{n="Agent_Branch";
e={($_.meta.gohai | ConvertFrom-Json).gohai | Select-Object -ExpandProperty
git_branch}}, @{n="ip"; e={($_.meta.gohai | ConvertFrom-Json).network | Select-
Object -ExpandProperty ipaddress}}, @{n="LogicalProcessors"; e={$logical =
($_.meta.gohai | ConvertFrom-Json).cpu | Select-Object -ExpandProperty

Chapter 6 Using PowerShell to Manage the Datadog Cloud Service

54

cpu_logical_processors; $cpu_cores = ($_.meta.gohai | ConvertFrom-Json).cpu |
Select-Object -ExpandProperty cpu_cores; ($logical / $cpu_cores) * $logical }} |
Sort-Object -Property host_name | ft

Searching for Events

In this example we’ll query any Microsoft event log errors between a certain time range and
have them passed back. Then we’ll convert them from JSON and look for specific event log error
messages.

Event Log Errors

$dateStart = (Get-Date (Get-Date).AddDays(-30) -Uformat %s) -replace "\..*", ""

$dateEnd = (Get-Date (Get-Date).AddDays(0) -Uformat %s) -replace "\..*", ""

$url_signature = "api/v1/events"

$EventSearch = @(

 "start=$dateStart",

 "end=$dateEnd"

 "source=Event Viewer"

)

$url = $url_base + $url_signature + "?api_key=$api_key" + "&" +
"application_key=$app_key" + "&" + ($EventSearch -join "&")

$response = Invoke-WebRequest -Uri $url -Method Get

$response.Content | ConvertFrom-Json | Select-Object -ExpandProperty events |
Where {$_.Title -eq "Application/Microsoft-Windows-Folder Redirection" -and
$_.Text -like "*redirect folder*"} | Select-Object -Unique -Property Text| fl
text

$response.Content | ConvertFrom-Json | Select-Object -ExpandProperty events |
Where {$_.Title -eq "System

 Using PowerShell to Manage the Datadog Cloud Service

55

Until next time happy scripting.

Allan

Chapter 7 Using PowerShell to Update the .Default and All User Profiles Registry

56

Chapter 7

Using PowerShell to Update
the .Default and All User
Profiles Registry

By: Allan Rafuse MVP

There are times that you may need to push out a change to all existing user profiles and to new
profiles that are created on a system. I’ve seen a few PowerShell scripts floating around out
there, but they didn’t seem to work for Windows 7 SP1. You may or may not be surprised, but
there are many organizations that still run Windows 7. The script is actually pretty simple.

Here is the breakdown of the script:

 Enumerate all the existing user profiles

 Add the .DEFAULT user profile to the list of existing user profiles

 Iterate through all the profiles

o If the profile hive is not loaded, load it

o Manipulate the users’ registry

o If the profile hive was loaded by the script, unload it

 Finished

Enumerate all the existing user profiles

Chapter 7 Using PowerShell to Update the .Default and All User Profiles Registry

57

Using the registry path below, we can find a list of all the user profiles on the system and where
the profile path exists. Every user profile has the file NTuser.dat which contains the registry hive
that is loaded into the HKEY_USERS and HKCU when a user logs on to the system. This
NTuser.dat can for example also be loaded when using RunAs.exe. It will then only show up in
HKEY_USERS\<users’ SID>

Get each user profile SID and Path to the profile

$UserProfiles = Get-ItemProperty "HKLM:\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\ProfileList*" | Where {$_.PSChildName -match "S-1-5-21-(\d+-
?){4}$" } | Select-Object @{Name="SID"; Expression={$_.PSChildName}},
@{Name="UserHive";Expression={"$($_.ProfileImagePath)\NTuser.dat"}}

Add the .DEFAULT user profile to the list of existing profiles

If you need to manipulate the registry of all new profiles, then you’ll need to add the following
code. The .DEFAULT user information does not exist in the registry key information above.

Add in the .DEFAULT User Profile

$DefaultProfile = "" | Select-Object SID, UserHive

$DefaultProfile.SID = ".DEFAULT"

$DefaultProfile.Userhive = "C:\Users\Public\NTuser.dat"

$UserProfiles += $DefaultProfile

Iterate through all the profiles

Chapter 7 Using PowerShell to Update the .Default and All User Profiles Registry

58

This is the main code where we will determine if we need to load or unload any user registry
hives. It is also where the registry changes will be made.

Loop through each profile on the machine</p>

Foreach ($UserProfile in $UserProfiles) {

 # Load User ntuser.dat if it's not already loaded

 If (($ProfileWasLoaded = Test-Path Registry::HKEY_USERS\$($UserProfile.SID))
-eq $false) {

 Start-Process -FilePath "CMD.EXE" -ArgumentList "/C REG.EXE LOAD
HKU\$($UserProfile.SID) $($UserProfile.UserHive)" -Wait -WindowStyle Hidden

 }

Manipulate the users’ registry

This is the area where you can create, delete or modify the registry. After the changes are made,
the profile will be unloaded. Upon the next logon, the changes will come into effect.

Manipulate the registry

$key =
"Registry::HKEY_USERS\$($UserProfile.SID)\Software\SomeArchaicSoftware\Configura
tion"

New-Item -Path $key -Force | Out-Null

New-ItemProperty -Path $key -Name "LoginURL" -Value
"https://www.myCompany.local" -PropertyType STRING -Force | Out-Null

New-ItemProperty -Path $key -Name "DisplayWelcome" -Value 0x00000001 -
PropertyType DWORD -Force | Out-Null

$key = "$key\UserInfo"

New-Item -Path $key -Force | Out-Null

Chapter 7 Using PowerShell to Update the .Default and All User Profiles Registry

59

New-ItemProperty -Path $key -Name "LoginName" -Value
"$($ENV:USERDOMAIN)\$($ENV:USERNAME)" -PropertyType STRING -Force | Out-Null

If the Profile hive was loaded by script, unload it

This is another area that is easier to just call out to REG.EXE again to unload the registry. One
issue to keep in mind is that if any handles are open to the registry, they need to be closed. If
they’re not closed, you’ll get “Access Denied” when trying to unload the registry hive. This is why
I’ve added the Garbage Collector. This cleans up all open handles [gc]::Collector. I also noticed
that if I was opening and closing registry hives too fast, they all weren’t being closed. I’m
guessing this is due to a race condition. I added a Start-Sleep 1 and this fixed the problem for
me.

Unload NTuser.dat

If ($ProfileWasLoaded -eq $false) {

 [gc]::Collect()

 Start-Sleep 1

 Start-Process -FilePath "CMD.EXE" -ArgumentList "/C REG.EXE UNLOAD
HKU\$($UserProfile.SID)" -Wait -WindowStyle Hidden| Out-Null

}

Happy coding and I hope this helps you solve whatever your problem was!

Allan

 Using PowerShell to Update the .Default and All User Profiles Registry

60

Chapter 8 Working with PowerShell Active Directory Module as a Non-Privileged User

61

Chapter 8

Working with PowerShell
Active Directory Module as a
Non-Privileged User

By: Thomas Rayner - MVP

As a best practice, as an administrator you should have separate accounts for your normal
activities (emails, IM, normal stuff) and your administrative activities (resetting passwords,
creating new mailboxes, etc.). It’s obviously best not to log into your normal workstation as your
administrative user. You’re also absolutely not supposed to remote desktop into a domain
controller (or another server) just to launch a PowerShell console, import the ActiveDirectory
module, and run your commands. Here’s a better way.

We’re going to leverage the $PSDefaultParameterValues built-in variable which allows you to
specify default values for cmdlets every time you run them.

First, set up a variable to hold your credentials.

$acred = Get-Credential -Message 'Admin creds'

Now, import the Active Directory module.

Import-Module ActiveDirectory

Chapter 8 Working with PowerShell Active Directory Module as a Non-Privileged User

62

And finally, a little something special.

$PSDefaultParameterValues += @{ 'activedirectory:*:Credential' = $acred }

I’m adding a value to my $PSDefaultParameterValues variable. What I’m saying is for all the
cmdlets in the ActiveDirectory module, set the -Credential parameter equal to the $acred
variable that I set first.

Now when I run any commands using the ActiveDirectory module, they’ll run the the
administrative credentials I supplied, instead of the credentials I’m logged into the computer
with.

Chapter 9 Using PowerShell to Split a String Without Losing the Character You Split On

63

Chapter 9

Using PowerShell to Split a
String Without Losing the
Character You Split On

By: Thomas Rayner – MVP

Previously, I’ve written about the difference between .split() and -split in PowerShell. We’re
going to keep splitting strings, but we’re going to try to retain the character that we’re splitting
on. Whether you use .split() or -split, when you split a string, it takes that character and
essentially turns it into the separation of the two items on either side of it. But, what if I want to
keep that character instead of losing it to the split?

Well, we’re going to have to dabble in regular expressions. Before you run away screaming, as I
know some people do when it comes to regex, let me walk you through this and see if you don’t
mind dipping a toe in these waters.

In our scenario, I’ve got a filename and I’m going to split it based on the slashes in the path.
Normally I’d get something like this.

$filename = get-item C:\temp\demo\thing.txt

$filename -split '\\'

 C:

temp

demo

thing.txt

Chapter 9 Using PowerShell to Split a String Without Losing the Character You Split On

64

Notice how I had to split on “\”? I had to escape that backslash. We’re regexing already! Also
notice that I lost the backslash on which I split the string. Now let’s do a tiny bit more regex in
our split pattern to retain that backslash.

$filename -split '(?=\\)'

C:

\temp

\demo

\thing.txt

Look at that, we kept our backslash. How? Well look at the pattern we split on: (?=\). That’s what
regex calls a “lookahead”. It’s contained in round brackets and the “?=” part basically means
“where the next character is a ” and the “\” still means our backslash. So we’re splitting the
string on the place in the string where the next character is a backslash. we’re effectively
splitting on the space between characters.

NEAT! Now what if I wanted the backslash to be on the other side? That is, at the end of the
string on each line instead of the start of the line after? No worries, regex has you covered there,
too.

$filename -split '(?<=\\)'

C:\

temp\

demo\

thing.txt

 Using PowerShell to Split a String Without Losing the Character You Split On

65

This is a “lookbehind”. It’s the same as a lookahead, except it’s looking for a place where the
character to the left matches the pattern, instead of the character to the right. A lookbehind is
denoted with the “?<=” characters.

There are plenty of resources online about using lookaheads and lookbehinds in regex, but if
you’re not looking specifically for regex resources, you probably wouldn’t have found them. If
PowerShell string splitting is what you’re after, hopefully you found this interesting.

Regex isn’t that scary, right?

Chapter 10 What's the difference between -split and .split() in PowerShell?

66

Chapter 10

What's the difference between
-split and .split() in
PowerShell?

By: Thomas Rayner – MVP

Here’s a question I see over and over and over again: “I have a string and I’m trying to split it on
this part, but it’s jumbling it into a big mess. What’s going on?” Well, there’s splitting a string in
PowerShell, and then there’s splitting a string in PowerShell. Confused? Let me explain.

Say you have this string for our example.

$splitstring = 'this is an interesting string with the letters s and t all over
the place'

$splitstring.split('s')

thi

 i

 an intere

ting

tring with the letter

 and t all over the place

Chapter 10 What's the difference between -split and .split() in PowerShell?

67

That did exactly what we thought it would. It took our string and broke it apart on all the “s”‘s.
Now, what if I want to split it where there’s an “st”? There’s only two spots it should split: the
“st” in “interesting” and in “string”. Let’s try the same thing we tried before.

$splitstring.split('st')

hi

 i

 an in

ere

ing

ring wi

h

he le

er

 and

 all over

he place

Well that ain’t right. What happened? If we look closely, we can see that our string was split
anywhere that there was an “s” or a “t”, rather than where there was an “st” together.

 What's the difference between -split and .split() in PowerShell?

68

.split() is a method that takes an array of characters and then splits the string anywhere it sees
any of those characters.

-split is an operator that takes a pattern string and splits the string anywhere it sees that
pattern.

Here’s what I should have done to split our string anywhere there’s an “st”.

$splitstring -split 'st'

this is an intere

ing

ring with the letters s and t all over the place

That looks more like we’re expecting.

Remember, .split() takes an array of characters, -split takes a string.

Chapter 11 PowerShell Rules for Format-Table and Format-List

69

Chapter 11

PowerShell Rules for Format-
Table and Format-List

By: Thomas Rayner – MVP

In PowerShell, when outputting data to the console, it’s typically either organized into a table or
a list. You can force output to take either of these forms using the Format-Table and the Format-
List cmdlets, and people who write PowerShell cmdlets and modules can take special steps to
make sure their output is formatted as they desire. But, when no developer has specifically asked
for a formatted output, how does PowerShell choose to display a table or a list?

The answer is actually pretty simple and I’m going to highlight it with an example. Take a look at
the following piece of code.

get-wmiobject -class win32_operatingsystem | select
pscomputername,caption,osarch*,registereduser

PS C:\Users\DKTCLAPTOP> get-wmiobject -class win32_operatingsystem | select
pscomputername,caption,osarch*,registereduser

PSComputerName caption OSArchitecture registereduser

-------------- ------- -------------- --------------

DKLAPTOP99 Microsoft Windows 10 Enterprise 64-bit DKTCLAPTOP

Chapter 11 PowerShell Rules for Format-Table and Format-List

70

I used Get-WmiObject to get some information about my operating system. I selected four
properties and PowerShell decided to display a table. Now, let’s add another property to return.

PS C:\Users\DKTCLAPTOP> get-wmiobject -class win32_operatingsystem | select
pscomputername,caption,osarch*,registereduser,version

PSComputerName : DKLAPTOP99

caption : Microsoft Windows 10 Enterprise

OSArchitecture : 64-bit

registereduser : DKTCLAPTOP

version : 10.0.14393

Whoa, now we get a list. What gives?

Well here’s how PowerShell decides, by default, whether to display a list or table:

· If showing four or fewer properties, show a table

· If showing five or more properties, show a list

That’s it, that’s how PowerShell decides by default whether to show you a list or table.

Chapter 12 The Difference Between Get-Member and .GetType() in PowerShell

71

Chapter 12

The Difference Between Get-
Member and .GetType() in
PowerShell

By: Thomas Rayner – MVP

Recently, I was helping someone in a forum who was trying to figure out what kind of object
their command was returning. They knew about the standard cmdlets people suggest when
you’re getting started (Get-Help, Get-Member, and Get-Command), but couldn’t figure out what
was coming back from a specific command.

In order to make this a more generic example, and to simplify it, let’s approach this differently.
Say I have these two objects where one is a string and the other is an array of two strings.

$thing1 = 'This is an item'

$thing2 = @('This is another item','This is one more item')

$thing1; $thing2

The third line shows you what you get if you write these out to the screen.

PS C:\Users\DKTCLAPTOP> $thing1 = 'This is an item'

$thing2 = @('This is another item','This is one more item')

$thing1; $thing2

This is an item

Chapter 12 The Difference Between Get-Member and .GetType() in PowerShell

72

This is another item

This is one more item

It looks like three separate strings, right? Well we should be able to dissect these with Get-
Member to get to the bottom of this and identify the types of objects these are. After all, one is a
string and the other is an array, right?

$thing1 | Get-Member

PS C:\Users\DKTCLAPTOP> $thing1 | Get-Member

 TypeName: System.String

Name MemberType Definition

---- ---------- ----------

Clone Method System.Object Clone(), System.Object

<OUTPUT Truncated>

Dang, $thing2 is an array but Get-Member is still saying the TypeName is System.String. What’s
going on?

Well, the key here is what we’re doing is writing the output of $thing2 into Get-Member. So the
output of $thing2 is two strings, and that’s what’s actually hitting Get-Member. If we want to see
what kind of object $thing2 really is, we need to use a method that’s built into every PowerShell
object: GetType().

$thing2.GetType()

Chapter 12 The Difference Between Get-Member and .GetType() in PowerShell

73

PS C:\Users\DKTCLAPTOP> $thing2.GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True Object[] System.Array

There you go. $thing2 is a System.Array object, just like we thought.

Chapter 13 Dynamically Create Preset Tests for PowerShell

74

Chapter 13

Dynamically Create Preset
Tests for PowerShell

 By: Thomas Rayner – MVP

The Pester people don’t really recommend this, but, I find it can be really helpful sometimes.
What I’m talking about is dynamically creating assertions inside of a Pester test using PowerShell.
While I think you should strive to follow best practices, sometimes what’s best for you isn’t
always a best practice, and as long as you know what you’re doing, I think you can get away with
bending the rules sometimes. Don’t tell anyone I said that.

Say you had a requirement to make sure that a function you wrote performed math, correctly.
Maybe it looks like this.

function Get-Square {

 param (

 [int]$Number

)

 $result = $Number * $Number

 $result

}

This will just get the square of the number we pass it. Your test might look like this.

describe 'Get-Square' {

 it 'squares 1' {

Chapter 13 Dynamically Create Preset Tests for PowerShell

75

 Get-Square 1 | Should Be 1

 }

 it 'squares 2' {

 Get-Square 2 | Should Be 4

 }

 it 'squares 3' {

 Get-Square 3 | Should Be 9

 }

}

PS C:\Users\DKTCLAPTOP> describe 'Get-Square' {

 it 'squares 1' {

 Get-Square 1 | Should Be 1

 }

 it 'squares 2' {

 Get-Square 2 | Should Be 4

 }

 it 'squares 3' {

 Get-Square 3 | Should Be 9

 }

}

Describing Get-Square

 [+] squares 1 749ms

 [+] squares 2 152ms

 [+] squares 3 14ms

Chapter 13 Dynamically Create Preset Tests for PowerShell

76

This would work. It would test your function correctly, and give you all the feedback you expect.
There’s another way to do this, though. Check out this next example.

describe 'Get-Square' {

 $tests = @(

 @(1,1),

 @(2,4),

 @(3,9)

)

 foreach ($test in $tests) {

 it "squares #($test[0])" {

 Get-Square $test[0] | Should Be $test[1]

 }

 }

}

PS C:\Users\DKTCLAPTOP> describe 'Get-Square' {

 $tests = @(

 @(1,1),

 @(2,4),

 @(3,9)

)

 foreach ($test in $tests) {

 it "squares #($test[0])" {

 Get-Square $test[0] | Should Be $test[1]

 }

Chapter 13 Dynamically Create Preset Tests for PowerShell

77

 }

}

Describing Get-Square

 [+] squares #(1 1[0]) 35ms

 [+] squares #(2 4[0]) 42ms

 [+] squares #(3 9[0]) 17ms

This particular example gets more complicated, but shows you what I’m talking about. $tests is
an array of smaller arrays where the first number is the number to be squared, and the second
number is the answer we expect. Then for each test (array in $tests), I’m generating a new it
assertion. Neat, right?

Yes, in this particular situation, we ignored Pester test cases, which would have worked here too.
This was just a silly example to show how you might tackle this problem differently, or in a
situation where test cases wouldn’t work for you.

Chapter 14 Piping PowerShell Output into Bash

78

Chapter 14

Piping PowerShell Output into
Bash

By: Thomas Rayner – MVP

With Windows 10, you can install Bash on Windows. Cool, right? Having Bash on Windows goes a
long way towards making Windows a more developer-friendly environment and opens a ton of
doors. The one I’m going to show you today is more of a novelty than anything else, but maybe
you’ll find something neat to do with it.

If you’ve been around PowerShell, you’re used to seeing the pipe character (|) used to pass the
output from one command into the input of another. What you can do now, kind of, is pass the
output of a PowerShell command into the input of a Bash command. Here’s an example. Get
ready for this biz.

Get-ChildItem c:\temp\demo | foreach-object { bash -c "echo $($_.Name) | awk
/\.csv/" }

In my c:\temp\demo folder, I have three files, two of which are CSVs. In an attempt to be super
inefficient, I am piping the files in that directory into a foreach-object loop and using Bash to tell
me which ones end in .csv, using awk. This is hardly the best way to do this, but it gives you an
idea of how you can start to intermingle these two shells.

Chapter 15 How to List All the Shares on a Server using PowerShell

79

Chapter 15

How to List All the Shares on
a Server using PowerShell

By: Thomas Rayner – MVP

There’s a few ways to get all of the shared folders on a server, but not all of them work for all
versions of Windows Server. You can use the Get-SmbShare cmdlet, or you can make CIM/WMI
do the work for you. I’ll show you what I prefer, though.

To use Get-SmbShare on a remote computer, you’ll create a new CIM session.

$ComputerName = 'tccalst01'

New-CimSession -ComputerName $computername -Credential $creds

PS C:\Windows\system32> $ComputerName = 'tccalst01'

New-CimSession -ComputerName $computername -Credential $creds

Id : 1

Name : CimSession1

InstanceId : 63a37d00-298f-4e82-8aa5-4b40de1e7709

ComputerName : tccalst01

Protocol : WSMAN

Chapter 15 How to List All the Shares on a Server using PowerShell

80

Then you can pass that CIM session to Get-SmbShare

Get-SmbShare -CimSession $(get-cimsession -id 1)

PS C:\Windows\system32> Get-SmbShare -CimSession $(get-cimsession -id 1)

Name ScopeName Path
Description

---- --------- ----

ADMIN$ * C:\Windows
Remote Admin

C$ * C:\
Default share

IPC$ *
Remote IPC

NETLOGON *
C:\Windows\SYSVOL\sysvol\triconts.com\... Logon server share

SYSVOL *
C:\Windows\SYSVOL\sysvol Logon server share

But what if the server is (heaven forbid!) older than Windows Server 2012R2? Well, you’d get an
error telling you “Get-Cimclass: The WS-Management service cannot process the request. The
CIM namespace win32_share is invalid.“. That won’t do.

Well, luckily for those older servers, you can use Get-WmiObject to retrieve this information.

$oldcomp = 'tccalst01'

Get-WmiObject -Class win32_share -ComputerName $oldComp -Credential $creds

 How to List All the Shares on a Server using PowerShell

81

Chapter 16 Get a ServiceNow User Using PowerShell

82

Chapter 16

Get a ServiceNow User Using
PowerShell

By: Thomas Rayner – MVP

Ever wanted to work with ServiceNow via PowerShell? Let me show you some basics like
fetching a user.

Let’s jump into some code first and I’ll break down what I’m doing.

$user = $Credential.Username

$pass = $Credential.GetNetworkCredential().Password

$base64AuthInfo =
[Convert]::ToBase64String([Text.Encoding]::ASCII.GetBytes(("{0}:{1}" -f $user,
$pass)))

$headers = New-Object
"System.Collections.Generic.Dictionary[[String],[String]]"

$headers.Add('Authorization',('Basic {0}' -f $base64AuthInfo))

$headers.Add('Accept','application/json')

$uri = "https://$SubscriptionSubDomain.service-
now.com/api/now/v1/table/sys_user?sysparm_query=user_name=$Username"

$response = Invoke-WebRequest -Headers $headers -Method "GET" -Uri $uri

$result = ($response.Content | ConvertFrom-Json).Result

Chapter 16 Get a ServiceNow User Using PowerShell

83

This isn’t my favorite way of handling credentials, but it’s what the ServiceNow documentation
recommends and, well, it works.

On line 9, I’m constructing my URI using a variable holding my subdomain and another variable
for the username I’m interested in ($SubscriptionSubDomain and $Username respectively).

Then on lines 11 and 12, I am invoking the web request to get the information about the user,
and parsing the result. I can then use the $result variable later in my script.

This has been particularly helpful for me when I’m trying to figure out the sys_id (ServiceNow’s
unique ID) for a specific user and all I know is their username.

Chapter 17 Add a Work Note to a ServiceNow Incident with PowerShell

84

 Chapter 17

Add a Work Note to a
ServiceNow Incident with
PowerShell

By: Thomas Rayner – MVP

Recently, I’ve been working more with ServiceNow and writing scripts and tools which
sometimes interact with it. One of the things that I find myself doing a lot is using PowerShell to
add a work note to an incident. Luckily, ServiceNow has an API that you can use to interact with
it and do this (among many other things).

Since I know that all my information is stored in the Incident table, it’s not too many steps to get
an incident out of ServiceNow if I have the incident number.

$user = $Credential.Username

$pass = $Credential.GetNetworkCredential().Password

$base64AuthInfo =
[Convert]::ToBase64String([Text.Encoding]::ASCII.GetBytes(("{0}:{1}" -f $user,
$pass)))

$headers = New-Object
"System.Collections.Generic.Dictionary[[String],[String]]"

$headers.Add('Authorization',('Basic {0}' -f $base64AuthInfo))

$headers.Add('Accept','application/json')

$uriGetIncident = "https://$SubDomain.service-
now.com/api/now/table/incident?sysparm_query=number%3D$SNIncidentNumber&sysparm_
fields=&sysparm_limit=1"

Chapter 17 Add a Work Note to a ServiceNow Incident with PowerShell

85

$responseGetIncident = Invoke-WebRequest -Headers $headers -Method "GET" -Uri
$uriGetIncident

$resultGetIncident = ($responseGetIncident.Content | ConvertFrom-Json).Result

Assuming I already created a credential object named $Credential to hold my ServiceNow creds, I
can add do some encoding to assemble them in a way that I can add them to the header of the
request I’m about to make. I’m doing that on the first three lines.

On lines 5 – 7, I’m constructing those headers. So far, I’m following all the PowerShell examples
given in the ServiceNow documentation.

Line 9 is where I create the URI for the incident get request. You’ll notice I have a variable for
both the subdomain (will be unique for your instance of ServiceNow) and the ServiceNow
incident number.

Lines 10 and 11 get the incident and parse the results of my request.

Now I can add some work notes.

$workNotesBody = @"

{"work_notes":"$Message"}

"@

$uriPatchIncident = "https://$SubDomain.service-
now.com/api/now/table/incident/$($resultGetIncident.sys_id)"

$null = Invoke-WebRequest -Headers $headers -Method "PATCH" -Uri
$uriPatchIncident -body $workNotesBody

On lines 1 – 3, I’m making the body of my patch request, to say that I’m adding the value of
$Message into the work_notes field of my incident. Line 5 is where I make the URI for this patch
activity, using the sys_id that came out of the get query I performed earlier.

 Add a Work Note to a ServiceNow Incident with PowerShell

86

On line 5, I’m muting the output of the web request to add the work notes to the incident. I’m
reusing the headers I set up for the get query.

Chapter 18 Use PowerShell to see how many items are in a Directory

87

Chapter 18

Use PowerShell to see how
many items are in a Directory

By: Thomas Rayner – MVP

Here’s a way to see how many items are in a directory, using PowerShell.

As you likely know, you can use Get-ChildItem to get all the items in a directory. Did you know,
however, that you can have PowerShell quickly count how many files and folders there are?

(Get-ChildItem -Path c:\temp\).count

PS C:\WINDOWS\system32> (Get-ChildItem -Path c:\temp\).count

22

I probably could have counted the files in this specific directory pretty easily myself, since there’s
only 3 of them. If you want to see how many files are in an entire folder structure, use the -
Recurse flag to go deeper.

You can do this with any output from a cmdlet when it’s returned in an array of objects. Check
this out.

(Get-AdUser -filter "Name -like 'Cristal *'").count

PS C:\Windows\system32> (Get-AdUser -filter "Name -like 'Cristal *'").count

7

Chapter 19 Add a Column to a CSV using PowerShell

88

In my test Active Directory, there are 7 AD users with a name that matches the pattern “Cristal
*”.

 Chapter 19

Add a Column to a CSV using
PowerShell

By: Thomas Rayner – MVP

Say you have a CSV file full of awesome, super great, amazing information. It’s perfect, except it’s
missing a column. Luckily, you can use Select-Object along with the other CSV cmdlets to add a
column.

In our example, let’s say that you have a CSV with two columns “ComputerName” and
“IPAddress” and you want to add a column for “Port3389Open” to see if the port for RDP is open
or not. It’s only a few lines of code from being done.

$servers = Import-Csv C:\Temp\demo\servers.csv

$servers

PS C:\WINDOWS\system32> $servers = Import-Csv C:\Temp\demo\servers.csv

$servers

Name IPAddress

Chapter 19 Add a Column to a CSV using PowerShell

89

---- ---------

Server01 10.1.2.10

Server02 10.1.2.11

TCCALST01 10.10.1.252

Now, let’s borrow some code from my post on calculated properties in PowerShell to help us add
this column and my post on seeing if a port is open using PowerShell to populate the data.

$servers = $servers | Select-Object -Property *, @{label = 'Port3389Open';
expression = {(Test-NetConnection -ComputerName $_.Name -Port
3389).TcpTestSucceeded}}

PS C:\WINDOWS\system32> $servers = $servers | Select-Object -Property *, @{label
= 'Port3389Open'; expression = {(Test-NetConnection -ComputerName $_.Name -Port
3389).TcpTestSucceeded}}

WARNING: TCP connect to Server01:3389 failed

WARNING: Ping to Server01 failed -- Status: TimedOut

WARNING: TCP connect to Server02:3389 failed

WARNING: Ping to Server02 failed -- Status: TimedOut

$servers | Export-Csv -Path c:\temp\demo\servers-and-port-data.csv -
NoTypeInformation

$Servers

PS C:\WINDOWS\system32> $Servers

Name IPAddress Port3389Open

---- --------- ------------

Server01 10.1.2.10 False

Server02 10.1.2.11 False

TCCALST01 10.10.1.252 True

 Add a Column to a CSV using PowerShell

90

Chapter 20 Diagnosing slow PowerShell Load Times

91

Chapter 20

Diagnosing slow PowerShell
Load Times

By: Thomas Rayner – MVP

I could write an entire book on “why does my PowerShell console take so long to load?” but I
don’t want to write that book. Instead, here’s a way to make sure the reason your console is
loading slowly isn’t because of something dumb.

When you launch PowerShell, one of the things that happens is that your profile is loaded. Your
profile is basically its own script that runs to setup and configure your environment before you
start using it. I use mine to define some custom aliases, functions, import some modules, and set
my prompt up. You can see what your profile is doing by running notepad $profile. This will open
your profile in notepad (but you can use the ISE or Visual Studio Code or Notepad++ etc. if you
prefer).

There is more than one profile used by PowerShell depending on how you’re running
PowerShell, and $profile will always refer to the one that’s currently applied to you. If you run
that command above and are told that there’s no such file, it means don’t have anything
configured in your PowerShell profile.

Keep in mind, there could be a lot of other reasons that your console loads slowly. This is just a
quick way to clear out any dumb code from your profile.

PS C:\Windows\system32> $profile

C:\Users\dkawula_1\Documents\WindowsPowerShell\Microsoft.PowerShellISE_profile.p
s1

Chapter 21 Use Test-NetConnection in PowerShell to see if a Port is Open

92

 Chapter 21

Use Test-NetConnection in
PowerShell to see if a Port is
Open

By: Thomas Rayner – MVP

The days of using ping.exe to see if a host is up or down are over. Your network probably
shouldn’t allow ICMP to just fly around unaddressed, and your hosts probably shouldn’t return
ICMP echo request (ping) messages either. So how do I know if a host is up or not?

Well, it involves knowing about what your host actually does. What ports are supposed to be
open? Once you know that, you can use Test-NetConnection in PowerShell to check if the port
is open and responding on the host you’re interested in.

$Nodes = 'tccalst01','tccaldc04'

$nodes

$Nodes | % {Test-NetConnection -Computername $_.ToString() -Port 3389}

PS C:\Windows\system32> $Nodes = 'tccalst01','tccaldc04'

$nodes

$Nodes | % {Test-NetConnection -Computername $_.ToString() -Port 3389}

tccalst01

tccaldc04

Chapter 22 Use PowerShell to find out How Long it is until Christmas

93

ComputerName : tccalst01

RemoteAddress : 10.10.1.252

RemotePort : 3389

InterfaceAlias : Ethernet

SourceAddress : 10.10.1.247

PingSucceeded : True

PingReplyDetails (RTT) : 1 ms

TcpTestSucceeded : True

ComputerName : tccaldc04

RemoteAddress : 10.10.1.249

RemotePort : 3389

InterfaceAlias : Ethernet

SourceAddress : 10.10.1.247

PingSucceeded : True

PingReplyDetails (RTT) : 0 ms

TcpTestSucceeded : True

Here I just checked if port 3389 (for RDP) is open or not. Looks like it is.

 Chapter 22

Use PowerShell to find out
How Long it is until Christmas

By: Thomas Rayner – MVP

Chapter 22 Use PowerShell to find out How Long it is until Christmas

94

It’s October (when I’m writing this) which means Christmas is right around the corner! Maybe
not. How long is it until Christmas, anyway? Well, PowerShell can tell us if we get the date of
Christmas and subtract today’s date from it.

(Get-Date 'December 25') - (Get-Date)

PS C:\Windows\system32> (Get-Date 'December 25') - (Get-Date)

Days : 71

Hours : 13

Minutes : 33

Seconds : 10

Milliseconds : 736

Ticks : 61831907360482

TotalDays : 71.5647075931505

TotalHours : 1717.55298223561

TotalMinutes : 103053.178934137

TotalSeconds : 6183190.7360482

TotalMilliseconds : 6183190736.0482

Only 6183190736.0482 more milliseconds until Christmas!

Chapter 23 Use PowerShell to Figure out “What day of the week” x number of days from now

95

Chapter 23

Use PowerShell to Figure out
“What day of the week” x
number of days from now

By: Thomas Rayner – MVP

There’s lots of fun things you can do with datetime objects in PowerShell, and using the Get-
Date

cmdlet. Here’s one of them.

Say you want to know what day of the week it will be some arbitrary number of days from now.
It’s pretty easy.

(Get-Date).AddDays(39).DayOfWeek

PS C:\WINDOWS\system32> (Get-Date).AddDays(39).DayOfWeek

Wednesday

At the time I write this, it looks like in 39 days, it’ll be Wednesday.

Chapter 23 Use PowerShell to Figure out “What day of the week” x number of days from now

96

Chapter 24 Using Get-Member to Explore Objects

97

 Chapter 24

Using Get-Member to Explore
Objects

By: Thomas Rayner – MVP

I previously wrote about using Select-Object to explore PowerShell objects. Now, I am going to
quickly cover using Get-Member to do the same.

Let’s say you’re using Get-CimInstance to get information about the operating system. You
might do something like this.

Get-CimInstance -ClassName win32_operatingsystem

PS C:\WINDOWS\system32> Get-CimInstance -ClassName win32_operatingsystem

SystemDirectory Organization BuildNumber RegisteredUser SerialNumber
Version

--------------- ------------ ----------- -------------- ------------

C:\WINDOWS\system32 14393 DKTCLAPTOP 00329-00000-00003-
AA795 10.0.14393

As is the case with our example last week, there’s more stuff returned and available to us than
what is returned by default. Let’s use Get-Member to see what it all is.

Chapter 24 Using Get-Member to Explore Objects

98

Get-CimInstance -ClassName win32_operatingsystem | get-member

PS C:\WINDOWS\system32> Get-CimInstance -ClassName win32_operatingsystem | get-
member

 TypeName:
Microsoft.Management.Infrastructure.CimInstance#root/cimv2/Win32_OperatingSystem

Name MemberType Definition

---- ---------- ----------

Clone Method System.Object
ICloneable.Clone()

Dispose Method void Dispose(), void
IDisposable.Dispose()

Equals Method bool Equals(System.Object
obj)

GetCimSessionComputerName Method string
GetCimSessionComputerName()

GetCimSessionInstanceId Method guid
GetCimSessionInstanceId()

GetHashCode Method int GetHashCode()

GetObjectData Method void
GetObjectData(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context), void ...

GetType Method type GetType()

ToString Method string ToString()

BootDevice Property string BootDevice {get;}

BuildNumber Property string BuildNumber {get;}

BuildType Property string BuildType {get;}

Caption Property string Caption {get;}

CodeSet Property string CodeSet {get;}

CountryCode Property string CountryCode {get;}

Chapter 24 Using Get-Member to Explore Objects

99

CreationClassName Property string CreationClassName
{get;}

<OUTPUT TRUNCATED>

Holy smokes, there’s a lot of stuff there. As with Select-Object, you can see all the different
properties that exist in this object. The big difference here is that you can see all the different
methods this object comes with, too. You could store this information in a variable and then
invoke the .HashCode() on it and see the output of that, like this.

$osInfo = Get-CimInstance -ClassName win32_operatingsystem

$osInfo.GetHashCode()

PS C:\WINDOWS\system32> $osInfo = Get-CimInstance -ClassName
win32_operatingsystem

PS C:\WINDOWS\system32> $osInfo.GetHashCode()

32638546

There’s a lot of examples of methods that are more interesting than this, but you can play with it
and make this work for you.

Chapter 25 Using Select-Object to Explore Objects

100

Chapter 25

Using Select-Object to
Explore Objects

By: Thomas Rayner – MVP

When you’re first getting started with PowerShell, you may not be aware that sometimes when
you run a command to get data, the information returned to the screen is not ALL the
information that the command actually returned.

Let me clarify with an example. If you run the Get-ChildItem cmdlet, you’ll get a bit of
information back about all the files in whichever directory you specified.

Get-ChildItem c:\temp\demo

PS C:\WINDOWS\system32> Get-ChildItem c:\temp\demo

 Directory: C:\temp\demo

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 10/14/2017 10:04 AM 133 servers-and-port-data.csv

-a---- 10/14/2017 10:02 AM 77 servers.csv

Chapter 25 Using Select-Object to Explore Objects

101

This is not all the data that got returned, though. There are far more properties than just Mode,
LastWriteTime, Length and Name to be examined. What are they? Well, we can pipe this cmdlet
into Select-Object -Property * to see them.

Get-ChildItem c:\temp\demo | Select-Object -Property *

PS C:\WINDOWS\system32> Get-ChildItem c:\temp\demo | Select-Object -Property *

PSPath : Microsoft.PowerShell.Core\FileSystem::C:\temp\demo\servers-
and-port-data.csv

PSParentPath : Microsoft.PowerShell.Core\FileSystem::C:\temp\demo

PSChildName : servers-and-port-data.csv

PSDrive : C

PSProvider : Microsoft.PowerShell.Core\FileSystem

PSIsContainer : False

Mode : -a----

VersionInfo : File: C:\temp\demo\servers-and-port-data.csv

 InternalName:

 OriginalFilename:

 FileVersion:

 FileDescription:

 Product:

 ProductVersion:

 Debug: False

 Patched: False

 PreRelease: False

 PrivateBuild: False

 SpecialBuild: False

 Language:

Chapter 25 Using Select-Object to Explore Objects

102

BaseName : servers-and-port-data

Target : {}

LinkType :

Name : servers-and-port-data.csv

Length : 133

DirectoryName : C:\temp\demo

Directory : C:\temp\demo

IsReadOnly : False

Exists : True

FullName : C:\temp\demo\servers-and-port-data.csv

Extension : .csv

CreationTime : 10/14/2017 10:04:43 AM

CreationTimeUtc : 10/14/2017 4:04:43 PM

LastAccessTime : 10/14/2017 10:04:43 AM

LastAccessTimeUtc : 10/14/2017 4:04:43 PM

LastWriteTime : 10/14/2017 10:04:43 AM

LastWriteTimeUtc : 10/14/2017 4:04:43 PM

Attributes : Archive

PSPath :
Microsoft.PowerShell.Core\FileSystem::C:\temp\demo\servers.csv

PSParentPath : Microsoft.PowerShell.Core\FileSystem::C:\temp\demo

PSChildName : servers.csv

PSDrive : C

PSProvider : Microsoft.PowerShell.Core\FileSystem

PSIsContainer : False

Mode : -a----

VersionInfo : File: C:\temp\demo\servers.csv

 InternalName:

 OriginalFilename:

 FileVersion:

Chapter 25 Using Select-Object to Explore Objects

103

 FileDescription:

 Product:

 ProductVersion:

 Debug: False

 Patched: False

 PreRelease: False

 PrivateBuild: False

 SpecialBuild: False

 Language:

BaseName : servers

Target : {}

LinkType :

Name : servers.csv

Length : 77

DirectoryName : C:\temp\demo

Directory : C:\temp\demo

IsReadOnly : False

Exists : True

FullName : C:\temp\demo\servers.csv

Extension : .csv

CreationTime : 10/14/2017 9:58:17 AM

CreationTimeUtc : 10/14/2017 3:58:17 PM

LastAccessTime : 10/14/2017 10:01:21 AM

LastAccessTimeUtc : 10/14/2017 4:01:21 PM

LastWriteTime : 10/14/2017 10:02:55 AM

LastWriteTimeUtc : 10/14/2017 4:02:55 PM

Attributes : Archive

Chapter 25 Using Select-Object to Explore Objects

104

Look at all that goodness. You can select specific properties by replacing the star with the names
of the properties you want to see.

Get-ChildItem c:\temp\demo | Select-Object -Property Name, Attributes,
IsReadOnly

PS C:\WINDOWS\system32> Get-ChildItem c:\temp\demo | Select-Object -Property
Name, Attributes, IsReadOnly

Name Attributes IsReadOnly

---- ---------- ----------

servers-and-port-data.csv Archive False

servers.csv Archive False

Happy scripting!

Chapter 26 Can PowerShell Parameters Belong to Multiple Sets?

105

Chapter 26

Can PowerShell Parameters
Belong to Multiple Sets?

By: Thomas Rayner – MVP

Say you’ve got a function that takes three parameters: Username, ComputerName and
SessionName, but you don’t want someone to use ComputerName and SessionName at once.
You decide to put them in separate parameter sets. Awesome, except you want Username to be
a part of both parameter sets and it doesn’t look like you can specify more than one.

This will generate an error:

function Do-Thing {

 [CmdletBinding()]

 param (

 [Parameter(ParameterSetName = 'Computer','Session')][string]$Username,

 [Parameter(ParameterSetName = 'Computer')][string]$ComputerName,

 [Parameter(ParameterSetName = 'Session')][PSSession]$SessionName

)

Other code

}

So how do you make a parameter a member of more than one parameter set? You need more
[Parameter()] qualifiers.

function Do-Thing {

 Can PowerShell Parameters Belong to Multiple Sets?

106

 [CmdletBinding()]

 param (

 [Parameter(ParameterSetName = 'Computer')]

 [Parameter(ParameterSetname = 'Session')]

 [string]$Username,

 [Parameter(ParameterSetName = 'Computer')][string]$ComputerName,

 [Parameter(ParameterSetName = 'Session')][PSSession]$SessionName

)

Other code

}

They chain together and you now $Username is a part of both parameter sets.

Chapter 27 Opening an Exchange Online Protection Shell

107

Chapter 27

Opening an Exchange Online
Protection Shell

By: Thomas Rayner – MVP

I built a PowerShell function in my profile to connect quickly to Exchange Online. That’s great,
but what if you also want to manage Exchange Online Protection (EOP) from a PoweShell
console? Well it turns out to be pretty easy.

$cred = Get-Credential

$s = New-PSSession -ConfigurationName Microsoft.Exchange -ConnectionUri
https://outlook.office365.com/powershell-liveid/ -Credential $cred -
Authentication Basic -AllowRedirection

import-pssession $s

PS C:\WINDOWS\system32> $cred = Get-Credential

$s = New-PSSession -ConfigurationName Microsoft.Exchange -ConnectionUri
https://outlook.office365.com/powershell-liveid/ -Credential $cred -
Authentication Basic -AllowRedirection

import-pssession $s

cmdlet Get-Credential at command pipeline position 1

Supply values for the following parameters:

WARNING: The names of some imported commands from the module 'tmp_5pt4o42k.j34'
include unapproved verbs that might make them less discoverable. To find the
commands with unapproved verbs, ru

n the Import-Module command again with the Verbose parameter. For a list of
approved verbs, type Get-Verb.

 Opening an Exchange Online Protection Shell

108

ModuleType Version Name ExportedCommands

---------- ------- ---- ----------------

Script 1.0 tmp_5pt4o42k.j34 {Add-
AvailabilityAddressSpace, Add-DistributionGroupMember, Add-
MailboxFolderPermission, Add-MailboxLocation...}

Chapter 28 Import Active Directory Module into Windows PE

109

Chapter 28

Import Active Directory
Module into Windows PE

By: Mick Pletcher – MVP

One thing I have been wanting to have is access to active directory in a WinPE environment. The
main reason I want it is to be able to delete systems from active directory during a build. When I
first started researching, I found this blog that guided me on writing this script. The blog tells
how to inject the AD module into the WIM file. That is fine, but do you really want to do that
every time you generate a new WIM file? I don't. I started testing to see if the directories could
be copied into the WinPE environment while it was running without the need of a reboot. It
worked. Currently, this script only makes the Active Directory module available in the WinPE
environment. I am going to write more scripts to take advantage of the AD module.

To use this script, you will need to place it on a network share, or if you are using WinPE, you can
place it within the scripts folder of the DeploymentShare so the image will have access to it. I
wrote this with four parameters so that you can use the domain username and password within
a task sequence without putting it inside the script to possibly expose it. The username and
password give the script access to map to the NetworkPath. The NetworkPath points to the
location where the Active Directory components reside to copy over to the WinPE environment.
The DriveLetter pertains to the drive letter you wish for the script to use when mapping to the
NetworkPath. If you want, you could enter default values for the parameters if you want.

The next thing you will need to do is to create the source folders on the NetworkPath, which will
contain all of the files.

Chapter 28 Import Active Directory Module into Windows PE

110

For 32-Bit WinPE, create the following directories on your NetworkPath. This is what my source
directory looks like:

NOTE: The last two directories will have different names as the module is updated by Microsoft.
You will have to search for the first part of the name to find them if it changes. That is why in the
script I have it to search for the name of the directory knowing that it might change.

For 32-bit WinPE, copy the following directories from a Windows 10 machine to the appropriate
directories created above. Make sure you copy all subdirectories along with the full contents:

· %windir%\System32\WindowsPowerShell\v1.0\Modules\ActiveDirectory

· %windir%\Microsoft.NET\assembly\GAC_32\Microsoft.ActiveDirectory.Management

· %windir%\Microsoft.NET\assembly\GAC_32\Microsoft.ActiveDirectory.Management.Re
sources

· %windir%\WinSxS\x86_microsoft.activedirectory.management_31bf3856ad364e35_6.3.
9431.0_none_b85eb2e785c286ef

· %windir%\WinSxS\msil_microsoft-windows-
d..ivecenter.resources_31bf3856ad364e35_6.3.9431.0_en-us_38f21d039944539f

For 64-Bit WinPE, I have included an If statement, but it has not been tested, so I can't guarantee
it will work. I am not sure if you still need to copy the 32-bit folders also, or if they can be

Chapter 28 Import Active Directory Module into Windows PE

111

removed and just the 64-bit folders installed. Here is the list of folders to copy from a Windows
10 x64 system:

· %windir%\SysWOW64\WindowsPowerShell\v1.0\Modules\ActiveDirectory

· %windir%\Microsoft.NET\assembly\GAC_64\Microsoft.ActiveDirectory.Management

· %windir%\Microsoft.NET\assembly\GAC_64\Microsoft.ActiveDirectory.Management.Re
sources

· %windir%\WinSxS\amd64_microsoft.activedir..anagement.resources_31bf3856ad364e3
5_6.3.9431.0_en-us_fb186ae865900ae8

As for the last 64-bit entry above, I have included a variable in the script to grab the name of the
directory as the last part will likely change upon future updates to the PowerShell AD module.

Below is how I put the script into the task sequence build. I first map a T: drive to the location of
where the directories above exist. I then execute the powershell script and finally unmap the T:
drive.

After you get these source files copied to a network location, you can now use the script below
to run during the WinPE environment. You can see the pop-up windows in the background as it
robocopies the directories over to WinPE.

One thing you will encounter when executing the script is that it will give you the following
warning when you import the module:

Chapter 28 Import Active Directory Module into Windows PE

112

I racked my brain last week trying to get this to go away. I was trying to use the new-psdrive to
open a connection to the active directory server and I just couldn't get it to work. I finally posted
to the Facebook PowerShell group and one advised me to ignore the message and use the -
server parameter for each cmdlet. That works. You can ignore this message. I ran the Get-
ADComputer cmdlet and specificed the AD server in the -server parameter. It worked perfectly.

: <#

 .SYNOPSIS

 Install PowerShell Active Directory Module

Chapter 28 Import Active Directory Module into Windows PE

113

 .DESCRIPTION

 Copies the PowerShell Active Directory Module to the WinPE
environment. This allows the use of the PowerShell module without having to
mount, inject the directories, and dismount a WIM everytime a new WIM is
generated.

 .PARAMETER DomainUserName

 Username with domain access used to map drives

 .PARAMETER DomainPassword

 Domain password used to map network drives

 .PARAMETER NetworkPath

 Network path to map where the Active Directory PowerShell module
exists

 .PARAMETER DriveLetter

 Drive letter mapping where the PowerShell Active Directory module
files exists

 .NOTES

===

 Created with: SAPIEN Technologies, Inc., PowerShell Studio 2016
v5.2.119

 Created on: 4/8/2016 12:41 PM

 Created by: Mick Pletcher

 Organization:

 Filename: InstallActiveDirectoryModule.ps1

===

 #>

 [CmdletBinding()]

Chapter 28 Import Active Directory Module into Windows PE

114

 param

 (

 [string]

 $DomainUserName,

 [string]

 $DomainPassword,

 [string]

 $NetworkPath,

 [string]

 $DriveLetter

)

 function Copy-Folder {

 <#

 .SYNOPSIS

 Copy Folder

 .DESCRIPTION

 Copy folder to destination

 .PARAMETER SourceFolder

 A description of the SourceFolder parameter.

 .PARAMETER DestinationFolder

 A description of the DestinationFolder parameter.

 .EXAMPLE

 PS C:\> Copy-Folder -SourceFolder 'Value1' -
DestinationFolder 'Value2'

 .NOTES

Chapter 28 Import Active Directory Module into Windows PE

115

 Additional information about the function.

 #>

 [CmdletBinding()]

 param

 (

 [string]

 $SourceFolder,

 [string]

 $DestinationFolder

)

 $Executable = $env:windir + "\system32\Robocopy.exe"

 $Switches = $SourceFolder + [char]32 + $DestinationFolder + [char]32 +
"/e /eta /mir"

 Write-Host "Copying "$SourceFolder"....." -NoNewline

 $ErrCode = (Start-Process -FilePath $Executable -ArgumentList $Switches -
Wait -Passthru).ExitCode

 If (($ErrCode -eq 0) -or ($ErrCode -eq 1)) {

 Write-Host "Success" -ForegroundColor Yellow

 } else {

 Write-Host "Failed with error code"$ErrCode -ForegroundColor Red

 }

 }

 function Get-Architecture {

 <#

 .SYNOPSIS

 Get-Architecture

 .DESCRIPTION

Chapter 28 Import Active Directory Module into Windows PE

116

 Returns whether the system architecture is 32-bit or 64-bit

 .EXAMPLE

 Get-Architecture

 .NOTES

 Additional information about the function.

 #>

 [CmdletBinding()][OutputType([string])]

 param ()

 $OSArchitecture = Get-WmiObject -Class Win32_OperatingSystem | Select-
Object OSArchitecture

 $OSArchitecture = $OSArchitecture.OSArchitecture

 Return $OSArchitecture

 #Returns 32-bit or 64-bit

 }

 function New-NetworkDrive {

 <#

 .SYNOPSIS

 Map network drive

 .DESCRIPTION

 Map the network drive for copying down the PowerShell Active
Directory files to the WinPE environment

 .EXAMPLE

 PS C:\> New-NetworkDrive

Chapter 28 Import Active Directory Module into Windows PE

117

 .NOTES

 Additional information about the function.

 #>

 [CmdletBinding()]

 param ()

 $Executable = $env:windir + "\system32\net.exe"

 $Switches = "use" + [char]32 + $DriveLetter + ":" + [char]32 +
$NetworkPath + [char]32 + "/user:" + $DomainUserName + [char]32 +
$DomainPassword

 Write-Host "Mapping"$DriveLetter":\ drive....." -NoNewline

 $ErrCode = (Start-Process -FilePath $Executable -ArgumentList $Switches -
Wait -Passthru).ExitCode

 If ((Test-Path $DriveLetter":\") -eq $true) {

 Write-Host "Success" -ForegroundColor Yellow

 } else {

 Write-Host "Failed" -ForegroundColor Yellow

 }

 }

 function Remove-NetworkDrive {

 <#

 .SYNOPSIS

 Delete the mapped network drive

 .DESCRIPTION

 Delete the mapped network drive

 .EXAMPLE

 PS C:\> Remove-NetworkDrive

Chapter 28 Import Active Directory Module into Windows PE

118

 .NOTES

 Additional information about the function.

 #>

 [CmdletBinding()]

 param ()

 $Executable = $env:windir + "\system32\net.exe"

 $Switches = "use" + [char]32 + $DriveLetter + ":" + [char]32 + "/delete"

 Write-Host "Deleting"$DriveLetter":\ drive....." -NoNewline

 $ErrCode = (Start-Process -FilePath $Executable -ArgumentList $Switches -
Wait -Passthru).ExitCode

 If ((Test-Path $DriveLetter":\") -eq $true) {

 Write-Host "Failed" -ForegroundColor Yellow

 } else {

 Write-Host "Success" -ForegroundColor Yellow

 }

 }

 cls

 #Get WinPE Architecture

 $Architecture = Get-Architecture

 #Map network drive to PowerShell active directory module

 New-NetworkDrive

 #Get msil_microsoft-windows-d..ivecenter.resources Directory Name

 $MicrosoftWindowsIvecenterResources = Get-ChildItem $DriveLetter":\" | where {
$_.Attributes -eq 'Directory' } | Where-Object { $_.FullName -like
"*msil_microsoft-windows-d..ivecenter.resources*" }

 #Get WinSxS x86_microsoft.activedirectory.management Name

 $WinSxSMicrosoftActiveDirectoryManagementResources = Get-ChildItem
$DriveLetter":\" | where { $_.Attributes -eq 'Directory' } | Where-Object {
$_.FullName -like "*x86_microsoft.activedirectory.management*" }

Chapter 28 Import Active Directory Module into Windows PE

119

 #Get WinSxS amd64_microsoft.activedir..anagement.resources Name

 $WinSxSMicrosoftActiveDirectoryManagementResources_x64 = Get-ChildItem
$DriveLetter":\" | where { $_.Attributes -eq 'Directory' } | Where-Object {
$_.FullName -like "*amd64_microsoft.activedir..anagement.resources*" }

 #Copy ActiveDirectory Folder

 Copy-Folder -SourceFolder $NetworkPath"\ActiveDirectory" -DestinationFolder
$env:windir"\System32\WindowsPowerShell\v1.0\Modules\ActiveDirectory"

 #Copy Microsoft.ActiveDirectory.Management Folder

 Copy-Folder -SourceFolder $NetworkPath"\Microsoft.ActiveDirectory.Management"
-DestinationFolder
$env:windir"\Microsoft.NET\assembly\GAC_32\Microsoft.ActiveDirectory.Management"

 #Copy Microsoft.ActiveDirectory.Management.Resources Folder

 Copy-Folder -SourceFolder
$NetworkPath"\Microsoft.ActiveDirectory.Management.Resources" -DestinationFolder
$env:windir"\Microsoft.NET\assembly\GAC_32\Microsoft.ActiveDirectory.Management.
Resources"

 #Copy msil_microsoft-windows-d..ivecenter.resources Folder

 Copy-Folder -SourceFolder $NetworkPath"\"$MicrosoftWindowsIvecenterResources -
DestinationFolder $env:windir"\WinSxS\"$MicrosoftWindowsIvecenterResources

 #Copy x86_microsoft.activedirectory.management Folder

 Copy-Folder -SourceFolder
$NetworkPath"\"$WinSxSMicrosoftActiveDirectoryManagementResources -
DestinationFolder
$env:windir"WinSxS\"$WinSxSMicrosoftActiveDirectoryManagementResources

 If ($Architecture -eq "64-bit") {

 #Copy ActiveDirectory x64 Folder

 Copy-Folder -SourceFolder $NetworkPath"\ActiveDirectory" -
DestinationFolder $env:SystemDrive"\"

 #Copy Microsoft.ActiveDirectory.Management x64 Folder

 Copy-Folder -SourceFolder
$NetworkPath"\Microsoft.ActiveDirectory.Management" -DestinationFolder
$env:windir"\Microsoft.NET\assembly\GAC_64\Microsoft.ActiveDirectory.Management"

 #Copy Microsoft.ActiveDirectory.Management.Resources x64 Folder

 Copy-Folder -SourceFolder
$NetworkPath"\Microsoft.ActiveDirectory.Management.Resources" -DestinationFolder

 Import Active Directory Module into Windows PE

120

$env:windir"\Microsoft.NET\assembly\GAC_64\Microsoft.ActiveDirectory.Management.
Resources"

 #Copy amd64_microsoft.activedir..anagement.resources x64 Folder

 Copy-Folder -SourceFolder
$NetworkPath"\"$WinSxSMicrosoftActiveDirectoryManagementResources_x64 -
DestinationFolder
$env:windir"\WinSxS\"$WinSxSMicrosoftActiveDirectoryManagementResources_x64

 }

 #Unmap Network Drive

 Remove-NetworkDrive

Chapter 29 Using PowerShell to report on Windows Updates installed during MDT OSD Build

121

Chapter 29

Using PowerShell to report on
Windows Updates installed
during MDT OSD Build

By: Mick Pletcher – MVP

I found it nice to be able to get a clean, filtered report on what Windows updates got installed
during the build process. This allows me to inject those updates into the MDT Packages so they
get injected into the image before it is laid down to speed the process up. I had published this
tool two years ago and decided to revamp it to also include email functionality. The tool has
given me a report, but there were times I forgot to look at it after a build completed. This
reminds me by sending the report out via email.

The way this tool works is by reading the ZTIWindowsUpdate.log file from the
c:\minint\smsosd\osdlogs directory and extracting the list of installed Windows Updates. The
script filters out everything that is non-windows updates, such as Dell drivers. It also filters out
the windows defender updates since those are cumulative and gets updated on a regular basis.

This is a screenshot of what the logs look like when executed and output to the screen:

Chapter 29 Using PowerShell to report on Windows Updates installed during MDT OSD Build

122

Here is a screenshot of what the same report looks like when opened up in Excel.

Chapter 29 Using PowerShell to report on Windows Updates installed during MDT OSD Build

123

The script extracts the KB article number and description and writes that information to an
object. The object is then displayed on the screen and written to a .CSV file. It is sorted by
KBArticle number.

The firm I work at uses Dell machines and in doing so I excluded all Dell drivers from the list.
There is also an exclusions.txt file it can read from to input items you may want to exclude from
the list. I added "*Advanced Micro Devices*" as one item in my TXT file. The exclusions.txt file
should reside in the same directory as the script.

The script has been tested when a system is connected to the domain (Final Image) and when it
belongs to a workgroup (Reference Image). It works in both instances.

I have pre-populated all parameters, except From, To, and SMTPServer. Those were left blank
since you would likely want to populate them at the command line.

Here is an example:

powershell.exe -file WindowsUpdatesReport.ps1 -email -From IT@Testcompany.com -
To mickpletcher@testcompany.com -SMTPServer smtp.testcompany.com

I have pre-populated the -OutputFile, -ExclusionsFile, -Subject, and -Body. You can go into the
script and change those or decide to override them by defining them at the command line. You
could also populate the -From, -To, and -SMTPServer if you like.

Here is a screenshot of how it is setup in the MDT task sequence the first time. This did not work.

Chapter 29 Using PowerShell to report on Windows Updates installed during MDT OSD Build

124

And this is a filtered screenshot of how it is setup under as an application install:

Chapter 29 Using PowerShell to report on Windows Updates installed during MDT OSD Build

125

I tried one more way to execute it and it finally worked as shown below:

Chapter 29 Using PowerShell to report on Windows Updates installed during MDT OSD Build

126

The command line I used is: powershell.exe -executionpolicy bypass -file <UNC
path>\WindowsUpdatesReport.ps1 -Email -From <sender's email address> -To <recipient's email
address> -SMTPServer <SMTP server address>

The start in contains the <UNC path> where the script resides.

You can download the file from my GitHub location:
https://github.com/MicksITBlogs/PowerShell/blob/master/WindowsUpdatesReport.ps1

Chapter 29 Using PowerShell to report on Windows Updates installed during MDT OSD Build

127

[CmdletBinding()]

 param

 (

 [ValidateNotNullOrEmpty()][string]$OutputFile =
'WindowsUpdatesReport.csv',

 [ValidateNotNullOrEmpty()][string]$ExclusionsFile = 'Exclusions.txt',

 [switch]$Email,

 [string]$From,

 [string]$To,

 [string]$SMTPServer,

 [string]$Subject = 'Windows Updates Build Report',

 [string]$Body = "List of windows updates installed during the build
process"

)

 function Get-RelativePath {

 [CmdletBinding()][OutputType([string])]

 param ()

 $Path = (split-path $SCRIPT:MyInvocation.MyCommand.Path -parent) + "\"

 Return $Path

 }

 function Remove-OutputFile {

 [CmdletBinding()]

 param ()

 #Get the path this script is executing from

 $RelativePath = Get-RelativePath

Chapter 29 Using PowerShell to report on Windows Updates installed during MDT OSD Build

128

 #Define location of the output file

 $File = $RelativePath + $OutputFile

 If ((Test-Path -Path $File) -eq $true) {

 Remove-Item -Path $File -Force

 }

 }

 function Get-Updates {

 [CmdletBinding()][OutputType([array])]

 param ()

 $UpdateArray = @()

 #Get the path this script is executing from

 $RelativePath = Get-RelativePath

 #File containing a list of exclusions

 $ExclusionsFile = $RelativePath + $ExclusionsFile

 #Get list of exclusions from exclusions file

 $Exclusions = Get-Content -Path $ExclusionsFile

 #Locate the ZTIWindowsUpdate.log file

 $FileName = Get-ChildItem -Path $env:HOMEDRIVE"\minint" -filter
ztiwindowsupdate.log -recurse

 #Get list of all installed updates except for Windows Malicious Software
Removal Tool, Definition Update for Windows Defender, and Definition Update for
Microsoft Endpoint Protection

 $FileContent = Get-Content -Path $FileName.FullName | Where-Object { ($_ -
like "*INSTALL*") } | Where-Object { $_ -notlike "*Windows Defender*" } | Where-
Object { $_ -notlike "*Endpoint Protection*" } | Where-Object { $_ -notlike
"*Windows Malicious Software Removal Tool*" } | Where-Object { $_ -notlike
"*Dell*" } | Where-Object { $_ -notlike $Exclusions }

 #Filter out all unnecessary lines

 $Updates = (($FileContent -replace (" - ", "~")).split("~") | where-object
{ ($_ -notlike "*LOG*INSTALL*") -and ($_ -notlike "*ZTIWindowsUpdate*") -and ($_
-notlike "*-*-*-*-*") })

Chapter 29 Using PowerShell to report on Windows Updates installed during MDT OSD Build

129

 foreach ($Update in $Updates) {

 #Create object

 $Object = New-Object -TypeName System.Management.Automation.PSObject

 #Add KB article number to object

 $Object | Add-Member -MemberType NoteProperty -Name KBArticle -Value
($Update.split("(")[1]).split(")")[0].Trim()

 #Add description of KB article to object

 $Description = $Update.split("(")[0]

 $Description = $Description -replace (",", " ")

 $Object | Add-Member -MemberType NoteProperty -Name Description -
Value $Description

 #Add the object to the array

 $UpdateArray += $Object

 }

 If ($UpdateArray -ne $null) {

 $UpdateArray = $UpdateArray | Sort-Object -Property KBArticle

 #Define file to write the report to

 $OutputFile = $RelativePath + $OutputFile

 $UpdateArray | Export-Csv -Path $OutputFile -NoTypeInformation -
NoClobber

 }

 Return $UpdateArray

 }

 Clear-Host

 #Delete the old report file

 Remove-OutputFile

 #Get list of installed updates

 Get-Updates

 If ($Email.IsPresent) {

 $RelativePath = Get-RelativePath

 $Attachment = $RelativePath + $OutputFile

Chapter 29 Using PowerShell to report on Windows Updates installed during MDT OSD Build

130

 #Email Updates

 Send-MailMessage -From $From -To $To -Subject $Subject -Body $Body -
SmtpServer $SMTPServer -Attachments $Attachment

 }

Chapter 30 Report on Mapped Drives to understand Cryptolocker Vulnerabilities with SCCM and
PowerShell

131

Chapter 30

Report on Mapped Drives to
understand Cryptolocker
Vulnerabilities with SCCM and
PowerShell

By: Mick Pletcher – MVP

Recently, we wanted to start keeping track of users with mapped drives due to cryptolocker
vulnerabilities. There are a few applications we have that require mapped drives, so we have
certain users with them.

This script will scan all user profiles on a machine and report users with mapped drives. This is
done by parsing through the HKU registries. It has been written so that you can either have the
script write the report to a text file if you do not have SCCM and/or it can write it to WMI so that
SCCM can read the results. I have also included a UNCPathExclusionsFile parameter that allows
you to create a text file that resides in the same directory as the script. It contains a list of UNC
paths that you do not want the script to report. I recommend pre-populating the values of the
$TextFileLocation and $UNCPathExclusionsFile parameters within the script. That just leaves the
$OutputFile and $SCCMReporting left to specify at the command line.

If you are wanting this to write the results to SCCM, here is what you need to do. First, SCCM
needs to know what to look for in order to report on it. This script will use WMI to report that
data to SCCM. The first thing is to execute the script locally on any PC. Run it using the following
command line: powershell.exe -file MappedDriveReport.ps1 -SCCMReporting

Chapter 30 Report on Mapped Drives to understand Cryptolocker Vulnerabilities with SCCM and
PowerShell

132

That command line will execute the script to scan for mapped drives write the results to WMI
and then initiate a hardware inventory. Because the new WMI entry has not been added to
SCCM, it will not be reported yet. Now that you have executed the script on the local machine,
do the following:

1. Go into SCCM--->Administration Tab--->Client Settings---> Default Client Settings---
>Hardware Inventory--->Set Classes.

2. Click Add--->Connect.

3. Enter the computer name of the system you ran the script on, check recursive, check
Credentials required (Computer is not local)---> <domain>\<username> in the username
field, and finally the password for the associated username.

4. Click Connect

5. Click on the Class Name tab to sort by class name

6. Scroll down to find MappedDrives and check the box

7. Click OK

Chapter 30 Report on Mapped Drives to understand Cryptolocker Vulnerabilities with SCCM and
PowerShell

133

You have now added the WMI class to SCCM for it to grab the data from the PCs and report it
back to SCCM.

To get the systems to report the data back to SCCM, you will need to setup a package, not an
application, in SCCM to deploy out to the systems. I have the package setup to re-run once a
week at 12:00 pm on Wednesdays so that I can get the most users to report back. More users
are online at that time here than any of the other days.

If you read the .Example in the documentation portion of the script, you will see two examples
on how to execute the script.

I have also included a hardware inventory within the script so the data will be reported back to
SCCM right after the script is executed.

In order to view the data in SCCM, you can do the following using the Resource Explorer:

1. Right-click on a machine in the Assets and Compliance--->Devices

2. Click Start--->Resource Explorer

3. Click the plus beside Hardware

4. If a system had mapped drives, then there will be a mapped drives field, otherwise it
does not exist.

You can also use the queries to report systems with mapped drives. Here is the query I use:

select distinct SMS_G_System_MAPPEDDRIVES.user,
SMS_G_System_MAPPEDDRIVES.Letter, SMS_G_System_MAPPEDDRIVES.Path
from SMS_R_System inner join SMS_G_System_MAPPEDDRIVES on

Chapter 30 Report on Mapped Drives to understand Cryptolocker Vulnerabilities with SCCM and
PowerShell

134

SMS_G_System_MAPPEDDRIVES.ResourceID = SMS_R_System.ResourceId
order by SMS_G_System_MAPPEDDRIVES.user

If you do not have SCCM and need a report, you can use the -OutputFile to have it write the
results to a text file at the specified location defined in the $TextFileLocation parameter.

 [CmdletBinding()]

 param

 (

 [switch]

 $OutputFile,

 [string]

 $TextFileLocation =
'\\drfs1\DesktopApplications\ProductionApplications\Waller\MappedDrivesReport\Re
ports',

 [string]

 $UNCPathExclusionsFile =
"\\drfs1\DesktopApplications\ProductionApplications\Waller\MappedDrivesReport\UN
CPathExclusions.txt",

 [switch]

 $SCCMReporting

)

 function Get-CurrentDate {

 [CmdletBinding()][OutputType([string])]

 param ()

 $CurrentDate = Get-Date

 $CurrentDate = $CurrentDate.ToShortDateString()

 $CurrentDate = $CurrentDate -replace "/", "-"

 If ($CurrentDate[2] -ne "-") {

Chapter 30 Report on Mapped Drives to understand Cryptolocker Vulnerabilities with SCCM and
PowerShell

135

 $CurrentDate = $CurrentDate.Insert(0, "0")

 }

 If ($CurrentDate[5] -ne "-") {

 $CurrentDate = $CurrentDate.Insert(3, "0")

 }

 Return $CurrentDate

 }

 function Get-MappedDrives {

 [CmdletBinding()][OutputType([array])]

 #Get UNC Exclusions from UNCPathExclusions.txt file

 $UNCExclusions = Get-Content $UNCPathExclusionsFile -Force

 #Get HKEY_Users Registry Keys

 [array]$UserSIDS = (Get-ChildItem -Path REGISTRY::HKEY_Users | Where-
Object { ($_ -notlike "*Classes*") -and ($_ -like "*S-1-5-21*") }).Name

 #Get Profiles from HKLM

 [array]$ProfileList = (Get-ChildItem -Path
REGISTRY::"HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\ProfileList" | Where-Object { $_ -like "*S-1-5-21*" }).Name

 $UserMappedDrives = @()

 #Iterate through each HKEY_USERS profile

 foreach ($UserSID in $UserSIDS) {

 #GET SID only

 [string]$UserSID = $UserSID.Split("\")[1].Trim()

 #Find the userprofile that matches the HKEY_USERS

 [string]$UserPROFILE = $ProfileList | Where-Object { $_ -like "*" +
$UserSID + "*" }

 #Get the username associated with the SID

 $Username = ((Get-ItemProperty -Path
REGISTRY::$UserPROFILE).ProfileImagePath).Split("\")[2].trim()

 #Define registry path to mapped drives

Chapter 30 Report on Mapped Drives to understand Cryptolocker Vulnerabilities with SCCM and
PowerShell

136

 [string]$MappedDrives = "HKEY_USERS\" + $UserSID + "\Network"

 #Get list of mapped drives

 [array]$MappedDrives = (Get-ChildItem REGISTRY::$MappedDrives |
Select-Object name).name

 foreach ($MappedDrive in $MappedDrives) {

 $DriveLetter = (Get-ItemProperty -Path REGISTRY::$MappedDrive |
select PSChildName).PSChildName

 $DrivePath = (Get-ItemProperty -Path REGISTRY::$MappedDrive |
select RemotePath).RemotePath

 If ($DrivePath -notin $UNCExclusions) {

 $Drives = New-Object System.Management.Automation.PSObject

 $Drives | Add-Member -MemberType NoteProperty -Name
ComputerName -Value $env:COMPUTERNAME

 $Drives | Add-Member -MemberType NoteProperty -Name
Username -Value $Username

 $Drives | Add-Member -MemberType NoteProperty -Name
DriveLetter -Value $DriveLetter

 $Drives | Add-Member -MemberType NoteProperty -Name
DrivePath -Value $DrivePath

 $UserMappedDrives += $Drives

 }

 }

 }

 Return $UserMappedDrives

 }

 function Get-RelativePath {

 [CmdletBinding()][OutputType([string])]

 param ()

 $Path = (split-path $SCRIPT:MyInvocation.MyCommand.Path -parent) + "\"

 Return $Path

Chapter 30 Report on Mapped Drives to understand Cryptolocker Vulnerabilities with SCCM and
PowerShell

137

 }

 function Invoke-SCCMHardwareInventory {

 [CmdletBinding()]

 param ()

 $ComputerName = $env:COMPUTERNAME

 $SMSCli = [wmiclass] "\\$ComputerName\root\ccm:SMS_Client"

 $SMSCli.TriggerSchedule("{00000000-0000-0000-0000-000000000001}") | Out-
Null

 }

 function New-WMIClass {

 [CmdletBinding()]

 param

 (

 [ValidateNotNullOrEmpty()][string]

 $Class

)

 $WMITest = Get-WmiObject $Class -ErrorAction SilentlyContinue

 If ($WMITest -ne $null) {

 $Output = "Deleting " + $WMITest.__CLASS[0] + " WMI class....."

 Remove-WmiObject $Class

 $WMITest = Get-WmiObject $Class -ErrorAction SilentlyContinue

 If ($WMITest -eq $null) {

 $Output += "success"

 } else {

 $Output += "Failed"

Chapter 30 Report on Mapped Drives to understand Cryptolocker Vulnerabilities with SCCM and
PowerShell

138

 Exit 1

 }

 Write-Output $Output

 }

 $Output = "Creating " + $Class + " WMI class....."

 $newClass = New-Object System.Management.ManagementClass("root\cimv2",
[String]::Empty, $null);

 $newClass["__CLASS"] = $Class;

 $newClass.Qualifiers.Add("Static", $true)

 $newClass.Properties.Add("ComputerName",
[System.Management.CimType]::String, $false)

 $newClass.Properties["ComputerName"].Qualifiers.Add("key", $true)

 $newClass.Properties["ComputerName"].Qualifiers.Add("read", $true)

 $newClass.Properties.Add("DriveLetter",
[System.Management.CimType]::String, $false)

 $newClass.Properties["DriveLetter"].Qualifiers.Add("key", $false)

 $newClass.Properties["DriveLetter"].Qualifiers.Add("read", $true)

 $newClass.Properties.Add("DrivePath",
[System.Management.CimType]::String, $false)

 $newClass.Properties["DrivePath"].Qualifiers.Add("key", $false)

 $newClass.Properties["DrivePath"].Qualifiers.Add("read", $true)

 $newClass.Properties.Add("Username", [System.Management.CimType]::String,
$false)

 $newClass.Properties["Username"].Qualifiers.Add("key", $false)

 $newClass.Properties["Username"].Qualifiers.Add("read", $true)

 $newClass.Put() | Out-Null

 $WMITest = Get-WmiObject $Class -ErrorAction SilentlyContinue

 If ($WMITest -eq $null) {

 $Output += "success"

 } else {

 $Output += "Failed"

 Exit 1

Chapter 30 Report on Mapped Drives to understand Cryptolocker Vulnerabilities with SCCM and
PowerShell

139

 }

 Write-Output $Output

 }

 function New-WMIInstance {

 [CmdletBinding()]

 param

 (

 [ValidateNotNullOrEmpty()][array]

 $MappedDrives,

 [string]

 $Class

)

 foreach ($MappedDrive in $MappedDrives) {

 Set-WmiInstance -Class $Class -Arguments @{ ComputerName =
$MappedDrive.ComputerName; DriveLetter = $MappedDrive.DriveLetter; DrivePath =
$MappedDrive.DrivePath; Username = $MappedDrive.Username } | Out-Null

 }

 }

 function Start-ConfigurationManagerClientScan {

 [CmdletBinding()]

 param

 (

 [ValidateSet('00000000-0000-0000-0000-000000000121', '00000000-0000-
0000-0000-000000000003', '00000000-0000-0000-0000-000000000010', '00000000-0000-
0000-0000-000000000001', '00000000-0000-0000-0000-000000000021', '00000000-0000-
0000-0000-000000000022', '00000000-0000-0000-0000-000000000002', '00000000-0000-
0000-0000-000000000031', '00000000-0000-0000-0000-000000000108', '00000000-0000-
0000-0000-000000000113', '00000000-0000-0000-0000-000000000111', '00000000-0000-

Chapter 30 Report on Mapped Drives to understand Cryptolocker Vulnerabilities with SCCM and
PowerShell

140

0000-0000-000000000026', '00000000-0000-0000-0000-000000000027', '00000000-0000-
0000-0000-000000000032')]$ScheduleID

)

 $WMIPath = "\\" + $env:COMPUTERNAME + "\root\ccm:SMS_Client"

 $SMSwmi = [wmiclass]$WMIPath

 $Action = [char]123 + $ScheduleID + [char]125

 [Void]$SMSwmi.TriggerSchedule($Action)

 }

 cls

 #Get list of mapped drives for each user

 $UserMappedDrives = Get-MappedDrives

 #Write output to a text file if -OutputFile is specified

 If ($OutputFile.IsPresent) {

 If (($TextFileLocation -ne $null) -and ($TextFileLocation -ne "")) {

 #Add backslash (\) to the end of the TextFileLocation if it is not
present

 If ($TextFileLocation[$TextFileLocation.Length - 1] -ne "\") {

 $TextFileLocation += "\"

 }

 #Write list of mapped drives to the specified text file.

 [string]$OutputFile = [string]$TextFileLocation + $env:COMPUTERNAME
+ ".txt"

 } else {

 #Get the relative path this script was executed from

 $RelativePath = Get-RelativePath

 $OutputFile = $RelativePath + $env:COMPUTERNAME + ".txt"

 }

 If ((Test-Path $OutputFile) -eq $true) {

 Remove-Item $OutputFile -Force

 Report on Mapped Drives to understand Cryptolocker Vulnerabilities with SCCM and PowerShell

141

 }

 If (($UserMappedDrives -ne $null) -and ($UserMappedDrives -ne "")) {

 $UserMappedDrives | Format-Table -AutoSize | Out-File $OutputFile -
Width 255

 }

 }

 If ($SCCMReporting.IsPresent) {

 #Create the new WMI class to write the output data to

 New-WMIClass -Class "Mapped_Drives"

 #Write the output data as an instance to the WMI class

 If ($UserMappedDrives -ne $null) {

 New-WMIInstance -MappedDrives $UserMappedDrives -Class
"Mapped_Drives"

 }

 #Invoke a hardware inventory to send the data to SCCM

 Invoke-SCCMHardwareInventory

 }

 #Display list of mapped drives for each user

 $UserMappedDrives | Format-Table

Chapter 31 Set Windows Features and Verify with PowerShell

142

Chapter 31

Set Windows Features and
Verify with PowerShell

By: Mick Pletcher – MVP

I am in the beginning stages of creating a Windows 10 build. One of the first things I needed to
do was to install and set the Windows 10 features. Before, I used a batch script that executed
DISM to set each feature. I know there is the Install-WindowsFeatures cmdlet, but I also wanted
to incorporate verification and other features into a single script.

This script allows you to set windows features while also verifying each feature was set correctly
by querying the feature for the status. It then outputs the feature name and status to the
display. I have also included the option to run a report of all available features and their state.
Here are the four features the script provides:

1. Set an individual feature via command line:

powershell.exe -executionpolicy bypass -command WindowsFeatures.ps1 -
Feature 'RSATClient-Features' -Setting 'disable'

2. Set multiple features by reading a text file located in the same directory as the script.
You can name the text file any name you want. The format for the file is:
RSATClient,enable for example. Here is the command line:

powershell.exe -executionpolicy bypass -command WindowsFeatures.ps1 -
FeaturesFile 'FeaturesList.txt'

3. Hard code a feature setting at the bottom of the script:

Chapter 31 Set Windows Features and Verify with PowerShell

143

Set-WindowsFeature -Name 'RSATClient-Features' -State 'disable'

4. Display a list of windows features:

powershell.exe -executionpolicy bypass -command WindowsFeatures.ps1 -
ListFeatures $true

You will need to use the -command when executing this at the command line instead of -file. This
is because the -ListFeatures is a boolean value. I have also included code that identifies an error
50 and returns a status that you must include the parent feature before activating the specified
feature. I have also made the additional command line window be minimized when running the
DISM.exe.

 [CmdletBinding()]

 param

 (

 [boolean]$ListFeatures = $false,

 [string]$Feature,

 [ValidateSet('enable', 'disable')][string]$Setting,

 [String]$FeaturesFile

)

 function Confirm-Feature {

 [CmdletBinding()][OutputType([boolean])]

 param

 (

 [ValidateNotNull()][string]$FeatureName,

 [ValidateSet('Enable', 'Disable')][string]$FeatureState

)

 $WindowsFeatures = Get-WindowsFeaturesList

Chapter 31 Set Windows Features and Verify with PowerShell

144

 $WindowsFeature = $WindowsFeatures | Where-Object { $_.Name -eq
$FeatureName }

 switch ($FeatureState) {

 'Enable' {

 If (($WindowsFeature.State -eq 'Enabled') -or
($WindowsFeature.State -eq 'Enable Pending')) {

 Return $true

 } else {

 Return $false

 }

 }

 'Disable' {

 If (($WindowsFeature.State -eq 'Disabled') -or
($WindowsFeature.State -eq 'Disable Pending')) {

 Return $true

 } else {

 Return $false

 }

 }

 default {

 Return $false

 }

 }

 }

 function Get-WindowsFeaturesList {

 [CmdletBinding()]

 param ()

 $Temp = dism /online /get-features

Chapter 31 Set Windows Features and Verify with PowerShell

145

 $Temp = $Temp | Where-Object { ($_ -like '*Feature Name*') -or ($_ -like
'*State*') }

 $i = 0

 $Features = @()

 Do {

 $FeatureName = $Temp[$i]

 $FeatureName = $FeatureName.Split(':')

 $FeatureName = $FeatureName[1].Trim()

 $i++

 $FeatureState = $Temp[$i]

 $FeatureState = $FeatureState.Split(':')

 $FeatureState = $FeatureState[1].Trim()

 $Feature = New-Object PSObject

 $Feature | Add-Member noteproperty Name $FeatureName

 $Feature | Add-Member noteproperty State $FeatureState

 $Features += $Feature

 $i++

 } while ($i -lt $Temp.Count)

 $Features = $Features | Sort-Object Name

 Return $Features

 }

 function Set-WindowsFeature {

 [CmdletBinding()]

 param

 (

 [Parameter(Mandatory =
$true)][ValidateNotNullOrEmpty()][string]$Name,

 [Parameter(Mandatory = $true)][ValidateSet('enable',
'disable')][string]$State

)

Chapter 31 Set Windows Features and Verify with PowerShell

146

 $EXE = $env:windir + "\system32\dism.exe"

 Write-Host $Name"....." -NoNewline

 If ($State -eq "enable") {

 $Parameters = "/online /enable-feature /norestart /featurename:" +
$Name

 } else {

 $Parameters = "/online /disable-feature /norestart /featurename:" +
$Name

 }

 $ErrCode = (Start-Process -FilePath $EXE -ArgumentList $Parameters -Wait
-PassThru -WindowStyle Minimized).ExitCode

 If ($ErrCode -eq 0) {

 $FeatureChange = Confirm-Feature -FeatureName $Name -FeatureState
$State

 If ($FeatureChange -eq $true) {

 If ($State -eq 'Enable') {

 Write-Host "Enabled" -ForegroundColor Yellow

 } else {

 Write-Host "Disabled" -ForegroundColor Yellow

 }

 } else {

 Write-Host "Failed" -ForegroundColor Red

 }

 } elseif ($ErrCode -eq 3010) {

 $FeatureChange = Confirm-Feature -FeatureName $Name -FeatureState
$State

 If ($FeatureChange -eq $true) {

 If ($State -eq 'Enable') {

 Write-Host "Enabled & Pending Reboot" -ForegroundColor
Yellow

 } else {

Chapter 31 Set Windows Features and Verify with PowerShell

147

 Write-Host "Disabled & Pending Reboot" -ForegroundColor
Yellow

 }

 } else {

 Write-Host "Failed" -ForegroundColor Red

 }

 } else {

 If ($ErrCode -eq 50) {

 Write-Host "Failed. Parent feature needs to be enabled first."
-ForegroundColor Red

 } else {

 Write-Host "Failed with error code "$ErrCode -ForegroundColor
Red

 }

 }

 }

 function Set-FeaturesFromFile {

 [CmdletBinding()]

 param ()

 $RelativePath = (split-path $SCRIPT:MyInvocation.MyCommand.Path -parent)
+ '\'

 $FeaturesFile = $RelativePath + $FeaturesFile

 If ((Test-Path $FeaturesFile) -eq $true) {

 $FeaturesFile = Get-Content $FeaturesFile

 foreach ($Item in $FeaturesFile) {

 $Item = $Item.split(',')

 Set-WindowsFeature -Name $Item[0] -State $Item[1]

 }

 }

 Set Windows Features and Verify with PowerShell

148

 }

 Clear-Host

 If ($ListFeatures -eq $true) {

 $WindowsFeatures = Get-WindowsFeaturesList

 $WindowsFeatures

 }

 If ($FeaturesFile -ne '') {

 Set-FeaturesFromFile

 }

 If ($Feature -ne '') {

 Set-WindowsFeature -Name $Feature -State $Setting

 }

Chapter 32 Uninstall an Application by Name with PowerShell

149

Chapter 32

Uninstall an Application by
Name with PowerShell

By: Mick Pletcher – MVP

Here is a function that will uninstall an MSI installed application by the name of the app. You do
not need to input the entire name either. For instance, say you are uninstalling all previous
versions of Adobe Reader. Adobe Reader is always labeled Adobe Reader X, Adobe Reader XI,
and so forth. This script allows you to do this without having to find out every version that is
installed throughout a network and then enter an uninstaller line for each version. You just need
to enter Adobe Reader as the application name and the desired switches. It will then search the
name fields in the 32 and 64 bit uninstall registry keys to find the associated GUID. Finally, it will
execute an msiexec.exe /x {GUID} to uninstall that version.

 [CmdletBinding()]

 param ()

 function Uninstall-MSIByName {

 [CmdletBinding()]

 param

 (

 [ValidateNotNullOrEmpty()][String]$ApplicationName,

 [ValidateNotNullOrEmpty()][String]$Switches

)

Chapter 32 Uninstall an Application by Name with PowerShell

150

 #MSIEXEC.EXE

 $Executable = $Env:windir + "\system32\msiexec.exe"

 #Get list of all Add/Remove Programs for 32-Bit and 64-Bit

 $Uninstall = Get-ChildItem
HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall -Recurse -ErrorAction
SilentlyContinue

 If (((Get-WmiObject -Class Win32_OperatingSystem | Select-Object
OSArchitecture).OSArchitecture) -eq "64-Bit") {

 $Uninstall += Get-ChildItem
HKLM:\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Uninstall -Recurse -
ErrorAction SilentlyContinue

 }

 #Find the registry containing the application name specified in
$ApplicationName

 $Key = $uninstall | foreach-object { Get-ItemProperty REGISTRY::$_ } |
where-object { $_.DisplayName -like "*$ApplicationName*" }

 If ($Key -ne $null) {

 Write-Host "Uninstall"$Key.DisplayName"....." -NoNewline

 #Define msiexec.exe parameters to use with the uninstall

 $Parameters = "/x " + $Key.PSChildName + [char]32 + $Switches

 #Execute the uninstall of the MSI

 $ErrCode = (Start-Process -FilePath $Executable -ArgumentList
$Parameters -Wait -Passthru).ExitCode

 #Return the success/failure to the display

 If (($ErrCode -eq 0) -or ($ErrCode -eq 3010) -or ($ErrCode -eq 1605))
{

 Write-Host "Success" -ForegroundColor Yellow

 } else {

 Write-Host "Failed with error code "$ErrCode -ForegroundColor
Red

 }

 }

 }

 Clear-Host

Chapter 32 Uninstall an Application by Name with PowerShell

151

 Uninstall-MSIByName -ApplicationName "Cisco Jabber" -Switches "/qb- /norestart"

Chapter 33 Azure Automatic Account Creation and Adding Modules using PowerShell

152

Chapter 33

Azure Automatic Account
Creation and Adding Modules
using PowerShell

By: Will Anderson – MVP

Microsoft's Operations Management Suite provides some exceptional tools for monitoring and
maintaining your environments in both the cloud and in your datacenter. One of it's best
features, however, is its ability to leverage the tools that you've already developed to perform
tasks and remediate issues using PowerShell, Azure Automation Runbooks, and OMS Alert
triggers. In this series, we'll be discussing how you can configure these tools to take care of
problems in your own environment. Today, we'll be talking about how you can take your own
PowerShell Modules and upload them to Azure Automation.

Creating the Azure Automation Account

In order to create the Azure Automation Account, you'll need to have create the automation
account object in the target resource group, and the ability to create an AzureRunAs account in
AzureAD. It's also important to be mindful that not every Azure region has the
Microsoft.Automation resource provider registered to it, so you'll want the resource group to
exist in the appropriate locale. You can check this with the Get-AzureRmResourceProvider
cmdlet:

Get-AzureRmResourceProvider -ProviderNamespace 'Microsoft.Automation'

Chapter 33 Azure Automatic Account Creation and Adding Modules using PowerShell

153

For our purposes, we'll be deploying a resource group to East US 2. Once the resource group has
been created, we'll use New-AzureRmAutomationAccount

$BaseName = 'testautoacct'

$Location = 'eastus2'

$ResGrp = New-AzureRmResourceGroup -Name $BaseName -Location $Location -Verbose

$AutoAcct = New-AzureRmAutomationAccount -ResourceGroupName
$ResGrp.ResourceGroupName -Name ($BaseName + $Location) -Location
$ResGrp.Location

It's good to note that while -Verbose is available for New-AzureRmAutomationAccount, it will not
return any verbose output.

Chapter 33 Azure Automatic Account Creation and Adding Modules using PowerShell

154

Creating a Blob Container in AzureRM

Now that we have our automation account created, we can begin uploading our modules to be
available for Azure Automation to use. In order to do so, we'll need to create a blob store that
we can upload our modules to so that the Azure Automation Account can import them; unlike in
the Azure UI, you cannot currently upload your modules directly from your local machine, so
you'll need to supply a URI for Azure Automation to access.

Another 'gotcha' is that there is no AzureRm cmdlet for creating a blob container, or for
uploading content to that container, so you'll need to do so using the Azure storage commands
and passing the Storage Context Key from AzureRM to Azure. Here is how you can create the
storage account, get the storage account key, create a context, and pass it to Azure:

$Stor = New-AzureRmStorageAccount -ResourceGroupName $ResGrp.ResourceGroupName -
Name modulestor -SkuName Standard_LRS -Location $ResGrp.Location -Kind
BlobStorage -AccessTier Hot

Add-AzureAccount

$Subscription = ((Get-AzureSubscription).where({$PSItem.SubscriptionName -eq
'LastWordInNerd'}))

Select-AzureSubscription -SubscriptionName $Subscription.SubscriptionName -
Current

Chapter 33 Azure Automatic Account Creation and Adding Modules using PowerShell

155

$StorKey = (Get-AzureRmStorageAccountKey -ResourceGroupName
$Stor.ResourceGroupName -Name $Stor.StorageAccountName).where({$PSItem.KeyName -
eq 'key1'})

$StorContext = New-AzureStorageContext -StorageAccountName
$Stor.StorageAccountName -StorageAccountKey $StorKey.Value

Once we've run our storage commands, you'll have captured the storage context object like so:

Now that we've got access to our AzureRm storage account in Azure, we can now create our blob
container:

$Container = New-AzureStorageContainer -Name 'modules' -Permission Blob -Context
$StorContext -Permission Blob

Chapter 33 Azure Automatic Account Creation and Adding Modules using PowerShell

156

NOTE - I have my container permission set to Blob, which makes this directory publicly
available. At some time in the near future, I'll walk you through how you can use SAS Tokens to
access secure blobs at runtime. Just be mindful of this if you use this code in production.

Upload a Blob Container

Now we can finally upload our modules to the blob store, and register them in Azure
Automation! What we're going to do here is take our custom module, compress it into a .zip file,
and then use the Set-AzureStorageBlobContent cmdlet to ship it up to our blob store. Once the
content is shipped, we use the $Blob.ICloudBlob.Uri.AbsoluteUri to feed the New-
AzureRmAutomationModule the URI required for the ContentLink parameter.

$ModuleLoc = 'C:\Scripts\Presentations\OMSAutomation\Modules\'

$Modules = Get-ChildItem -Directory -Path $ModuleLoc

 ForEach ($Mod in $Modules){

 Compress-Archive -Path $Mod.PSPath -DestinationPath ($ModuleLoc + '\' +
$Mod.Name + '.zip') -Force

Chapter 33 Azure Automatic Account Creation and Adding Modules using PowerShell

157

 }

$ModuleArchive = Get-ChildItem -Path $ModuleLoc -Filter "*.zip"

ForEach ($Mod in $ModuleArchive){

 $Blob = Set-AzureStorageBlobContent -Context $StorContext -Container
$Container.Name -File $Mod.FullName -Force -Verbose

 New-AzureRmAutomationModule -ResourceGroupName $ResGrp.ResourceGroupName -
AutomationAccountName $AutoAcct.AutomationAccountName -Name
($Mod.Name).Replace('.zip','') -ContentLink $Blob.ICloudBlob.Uri.AbsoluteUri

}

Now that we've done all that, we can validate that we have our module in Azure Automation
through the UI:

Chapter 34 Configuring Azure Automation Runbooks and Understanding Webhook Data using
PowerShell

158

Now that we've uploaded our modules into Azure Automation, we can start using them to
perform tasks in Azure.

Chapter 34

Configuring Azure
Automation Runbooks and
Understanding Webhook Data
using PowerShell

By: Will Anderson – MVP

Chapter 34 Configuring Azure Automation Runbooks and Understanding Webhook Data using
PowerShell

159

So, last time we learned how to upload our custom modules into Azure Automation so we can
start using them in Azure Automation Runbooks. This week we're going to take a look at
configuring a runbook to see what kind of data we can ingest from OMS Webhook data, and how
we can leverage that data to pass into our functions.

Creating the Runbook Script

So first off, let's talk about basic runbooks and running them against objects in Azure. As
previously discussed, when your automation account is created, it creates with it an
AzureRunAsAccount. This account is configured to act on behalf of the user that has access to
the automation account and the runbooks in order to perform the runbook task. In order to
leverage this account, you need to invoke it in the runbook itself. You can actually find an
example of this snippet in the AzureAutomationTutorialScript runbook in your automation
account.

$connectionName = "AzureRunAsConnection"

try

{

 # Get the connection "AzureRunAsConnection "

 $servicePrincipalConnection=Get-AutomationConnection -Name $connectionName

 "Logging in to Azure..."

 Add-AzureRmAccount `

 -ServicePrincipal `

 -TenantId $servicePrincipalConnection.TenantId `

 -ApplicationId $servicePrincipalConnection.ApplicationId `

 -CertificateThumbprint $servicePrincipalConnection.CertificateThumbprint

Chapter 34 Configuring Azure Automation Runbooks and Understanding Webhook Data using
PowerShell

160

}

catch {

 if (!$servicePrincipalConnection)

 {

 $ErrorMessage = "Connection $connectionName not found."

 throw $ErrorMessage

 } else{

 Write-Error -Message $_.Exception

 throw $_.Exception

 }

}

So now that we've got our opening snippet, we'll add that into a new .ps1 script file in our
preferred integrated scripting environment tool and get to work.

Now, in order to be able to ingest data from an OMS Alert, we need to be able to pass the data
to our Azure Automation runbook. In order to do so, we only need to add a $WebHookData
parameter to the runbook and specify the data type as object.

Param (

 [Parameters()][object]$WebHookData

)

Chapter 34 Configuring Azure Automation Runbooks and Understanding Webhook Data using
PowerShell

161

Now, we need to convert that data from a JSON object into something readable in our
output. Webhook data is presented with three primary datasets - WebhookName,
RequestHeader, and RequestBody. WebhookName, obviously is the name of the incoming
webhook. RequestHeader is a hash table containing all of the header data for the incoming
requestion. And finally, RequestBody is the body of the incoming request. This is where the data
we want to parse will reside. Specifically, it will reside under the SearchResults property of the
RequestHeader dataset.

 $WebhookData.WebhookName

 $WebhookData.RequestHeader

 $WebhookData.RequestBody

Let's configure our runbook to display the incoming data to examine what we have to play with.

$SearchResults = (ConvertFrom-Json $WebhookData.RequestBody).SearchResults.value

$SearchResults

Publish the Runbook

Now, we'll go ahead and save our script as a .ps1 file and upload it to our automation account
with the Import-AzureRmAutomationRunbook cmdlet.

Import-AzureRmAutomationRunbook -Path
'C:\Scripts\Presentations\OMSAutomation\ExampleRunbookScript.ps1' -Name
WebhookNSGRule -Type PowerShell -ResourceGroupName $AutoAcct.ResourceGroupName -
AutomationAccountName $AutoAcct.AutomationAccountName -Published

Chapter 34 Configuring Azure Automation Runbooks and Understanding Webhook Data using
PowerShell

162

And now we can see our return.

And if we check through the UI, we can see a brand-new, shiny runbook sitting in our automation
account! Now, we can configure a basic alert to monitor in OMS.

Create an Alert

For the purposes of this example, I've create a couple of virtual machines with network security
group rules for HTTP:80 and RDP:3389 accepting connections from anywhere. I do not
recommend doing this for a production virtual machine. /endDisclaimer

As you can well expect, these machines are throwing MaliciousIP traffic alerts in Operations
Management Suite's console:

Chapter 34 Configuring Azure Automation Runbooks and Understanding Webhook Data using
PowerShell

163

If we click on the MaliciousIP flag, it'll take us to the Log Search screen. This includes the query
data that we can use for the alert. However, you'll want to clean up the query data a bit to
generalize it. In this example, the query is specific to the country that is displayed in the given
flag. But if we remove the country specific portion of the query, it'll allow us to cast a wider net
and get data on potentially malicious traffic from any given country.

Canned Query:

MaliciousIP=* AND (RemoteIPCountry=* OR MaliciousIPCountry=*) AND
(((Type=WireData AND Direction=Outbound) OR (Type=WindowsFirewall
AND CommunicationDirection=SEND) OR (Type=CommonSecurityLog AND
CommunicationDirection=Outbound)) OR (Type=W3CIISLog OR
Type=DnsEvents OR (Type = WireData AND Direction!= Outbound) OR
(Type=WindowsFirewall AND CommunicationDirection!=SEND) OR (Type

Chapter 34 Configuring Azure Automation Runbooks and Understanding Webhook Data using
PowerShell

164

= CommonSecurityLog AND CommunicationDirection!= Outbound)))
(RemoteIPCountry="People's Republic of China" OR
MaliciousIPCountry="People's Republic of China")

Modified Query:

MaliciousIP=* AND (RemoteIPCountry=* OR MaliciousIPCountry=*) AND
(((Type=WireData AND Direction=Outbound) OR (Type=WindowsFirewall
AND CommunicationDirection=SEND) OR (Type=CommonSecurityLog AND
CommunicationDirection=Outbound)) OR (Type=W3CIISLog OR
Type=DnsEvents OR (Type = WireData AND Direction!= Outbound) OR
(Type=WindowsFirewall AND CommunicationDirection!=SEND) OR (Type
= CommonSecurityLog AND CommunicationDirection!= Outbound)))

After testing our query to make sure it's valid, we can now hit the alert button and configure the
alert. Here you'll need to give it an alert name, a schedule, and number of results before it
triggers the alert. You'll also want to select the Runbook option under actions and select the test
runbook we created. Then we hit save, and wait for our alert to trigger and the runbook to fire.

Chapter 34 Configuring Azure Automation Runbooks and Understanding Webhook Data using
PowerShell

165

And as you can see, I didn't have to wait long:

Chapter 34 Configuring Azure Automation Runbooks and Understanding Webhook Data using
PowerShell

166

Validating our Data

If we click on one of the completed instances, and navigate to the output blade, we can now see
the data we're receiving from our triggered alert. This particular data shows that inbound traffic
from Colombia is attempting an RDP connection to my virtual machine. With the inbound IP
Address and target system name, we now have enough data to be able to create a full-blown
auto-remediation solution.

Logging in to Azure...

Environments
Context

Chapter 34 Configuring Azure Automation Runbooks and Understanding Webhook Data using
PowerShell

167

{[AzureCloud, AzureCloud], [AzureChinaCloud, AzureChinaCloud],
[AzureUSGovernment, AzureUSGovernment]} Microsoft.Azur...

Computer : server1

MG : 00000000-0000-0000-0000-000000000001

ManagementGroupName : AOI-cb0eefe8-b88f-47ce-ae91-
dbc46df99751

SourceSystem : OpsManager

TimeGenerated : 2017-07-21T12:17:37.45Z

SessionStartTime : 2017-07-21T12:16:52Z

SessionEndTime : 2017-07-21T12:16:52Z

LocalIP : 10.119.192.10

LocalSubnet : 10.119.192.0/21

LocalMAC : 00-0d-3a-03-ea-a6

LocalPortNumber : 3389

RemoteIP : 200.35.53.121

RemoteMAC : 12-34-56-78-9a-bc

RemotePortNumber : 4935

Chapter 34 Configuring Azure Automation Runbooks and Understanding Webhook Data using
PowerShell

168

SessionID :
10.119.192.10_3389_200.35.53.121_4935_2184_2017-07-
21T12:16:52.000Z

SequenceNumber : 0

SessionState : Listen

SentBytes : 20

ReceivedBytes : 40

TotalBytes : 60

ProtocolName : TCP

IPVersion : IPv4

SentPackets : 1

ReceivedPackets : 2

Direction : Inbound

ApplicationProtocol : RDP

ProcessID : 888

ProcessName : C:\Windows\System32\svchost.exe

ApplicationServiceName : ms-wbt-server

LatencyMilliseconds : 116

LatencySamplingTimeStamp : 2017-07-21T12:16:52Z

LatencySamplingFailureRate : 0.0%

MaliciousIP : 200.35.53.121

Chapter 34 Configuring Azure Automation Runbooks and Understanding Webhook Data using
PowerShell

169

IndicatorThreatType : Botnet

Confidence : 75

Severity : 2

FirstReportedDateTime : 2017-07-20T20:10:32Z

LastReportedDateTime : 2017-07-21T11:25:11.0661909Z

IsActive : true

ReportReferenceLink : https://interflowinternal.azure-
api.net/api/reports/download/generic/webbot.json

RemoteIPLongitude : -75.88

RemoteIPLatitude : 8.77

RemoteIPCountry : Colombia

id : 149270bc-74fc-13d0-34a9-3fd665a457b2

Type : WireData

__metadata : @{Type=WireData; TimeGenerated=2017-
07-21T12:17:37.45Z}

It's a long road, and we're almost there! In the next chapter I'll take you through my process of
modifying my module to directly ingest webhook data, and how we can take our OMS queries
and deploy them to other Operations Management Suite solutions using PowerShell. See you
then!

Chapter 35 Utilizing Webhook Data in Functions and Validate Results using PowerShell

170

Chapter 35

Utilizing Webhook Data in
Functions and Validate
Results using PowerShell

By: Will Anderson – MVP

It's been a long road, but we're almost there! A couple of weeks ago we looked at how we can
create an Azure Automation Account and add our own custom modules to the solution to be
used in Azure Automation. Last week, we took a deeper dive into configuring a runbook to take
in webhook data from an alert using Microsoft's Operations Management Suite. Then we looked
into the data itself to see how we can leverage it against our runbook to fix problems for us on
the fly.

In this chapter, we're going to modify an existing function to use that webhook data directly.

Building on Webhook Data

We could actually build our logic directly into the runbook to parse the webhook data and then
pass the formatted information to our function that we've made available in Azure. But I prefer
to keep my runbooks as simple as possible and do the heavy lifting in my function. This makes
the runbook look a little bit cleaner, and allows me to minimize my code management a little
more. Also, Azure Automation Runbooks, as of this writing, don't play nicely with parameter sets
in them, so I might as well pass my data along to a command that does.

Originally, I had built a one-liner that allowed me to create an NSG rule on the fly to block and
incoming traffic from a specific IPAddress. It was a fairly simple command. But today, we're

Chapter 35 Utilizing Webhook Data in Functions and Validate Results using PowerShell

171

going to make it a little more robust, and give it the ability to use webhook data. Here's my
original code:

Function Set-AzureRmNSGMaliciousRule {

 [cmdletbinding()]

 Param(

 [Parameter(Mandatory=$true)][string]$ComputerName,

 [Parameter(Mandatory=$true)][string]$IPAddress

)

 $ResGroup = (Get-AzureRmResource).where({$PSItem.Name -eq $Sys})

 $VM = Get-AzureRmVM -ResourceGroupName $ResGroup.ResourceGroupName -Name
$Sys

 $VmNsg = (Get-AzureRmNetworkSecurityGroup -ResourceGroupName
$VM.ResourceGroupName).where({$PSItem.NetworkInterfaces.Id -eq
$VM.NetworkProfile.NetworkInterfaces.Id})

 $Priority = ($VmNsg.SecurityRules) | Where-Object -Property Priority -LT 200
| Select-Object -Last 1

 If ($Priority -eq $null){

 $Pri = 100

 }

Chapter 35 Utilizing Webhook Data in Functions and Validate Results using PowerShell

172

 Else {

 $Pri = ($Priority + 1)

 }

 $Name = ('BlockedIP_' + $IPAddress)

 $NSGArgs = @{

 Name = $Name

 Description = ('Malicious traffic from ' + $IPAddress)

 Protocol = '*'

 SourcePortRange = '*'

 DestinationPortRange = '*'

 SourceAddressPrefix = $IPAddress

 DestinationAddressPrefix = '*'

 Access = 'Deny'

 Direction = 'Inbound'

 Priority = $Pri

 }

 $VmNsg | Add-AzureRmNetworkSecurityRuleConfig @NSGArgs | Set-
AzureRmNetworkSecurityGroup

}

Chapter 35 Utilizing Webhook Data in Functions and Validate Results using PowerShell

173

I want to keep my mandatory parameters for my original one-liner solution in-case I need to do
something tactically. So we'll go ahead and split the parameters for on-prem vs. webhook into
different parameter sets. As webhook data is formatted as a JSON object, we'll need to specify
the data type for the WebhookData parameter as object.

 Param(

 [Parameter(ParameterSetName='ConsoleInput')][string]$ComputerName,

 [Parameter(ParameterSetName='ConsoleInput')][string]$MaliciousIP,

 [Parameter(ParameterSetName='WebhookInput")][object]$WebhookData

)

Now, we're going to add some logic to parse out the data that we're looking to use:

 If($PSCmdlet.ParameterSetName -eq 'WebhookInput'){

 $SearchResults = (ConvertFrom-Json
$WebhookData.RequestBody).SearchResults.value

 Write-Output ("Target computer is " + $SearchResults.Computer)

Chapter 35 Utilizing Webhook Data in Functions and Validate Results using PowerShell

174

 Write-Output ("Malicious IP is " + $SearchResults.RemoteIP)

 $ComputerName = (($SearchResults.Computer).split(' ') | Select-Object -
First 1)

 $MaliciousIP = (($SearchResults.RemoteIP).split(' ') | Select-Object -
First 1)

 }

 If ($ComputerName -like "*.*"){

 $Sys = $ComputerName.Split('.') | Select-Object -First 1

 }

 Else {

 $Sys = $ComputerName

 }

You'll notice that I'm doing some string formatting with our data here. Webhook data can
concatenate multiple alerts together and separate the array by using spaces, so we're splitting
that up and grabbing the first entry for each input we need. The additional splitting on the
ComputerName is to accomodate for systems that are domain joined, as Azure isn't necessarily
aware of a system's FQDN. Mind you, this is a rough example, and continuously growing; So as
my use cases evolve, so will my code.

Now that we have our data formatted, we can update our module and upload it to our Azure
Automation Account using the same process outlined in Part I, but with the -Force parameter
added so we can overwrite the existing instance.

Chapter 35 Utilizing Webhook Data in Functions and Validate Results using PowerShell

175

 Param(

 [Parameter(Mandatory=$true)]

 [object]$WebhookData

)

$connectionName = "AzureRunAsConnection"

try

{

 # Get the connection "AzureRunAsConnection "

 $servicePrincipalConnection=Get-AutomationConnection -Name $connectionName

 "Logging in to Azure..."

 Add-AzureRmAccount `

 -ServicePrincipal `

 -TenantId $servicePrincipalConnection.TenantId `

 -ApplicationId $servicePrincipalConnection.ApplicationId `

 -CertificateThumbprint $servicePrincipalConnection.CertificateThumbprint

}

catch {

 if (!$servicePrincipalConnection)

 {

 $ErrorMessage = "Connection $connectionName not found."

 throw $ErrorMessage

 } else{

 Write-Error -Message $_.Exception

 throw $_.Exception

 }

Chapter 35 Utilizing Webhook Data in Functions and Validate Results using PowerShell

176

}

Set-AzureRmNSGMaliciousRule -WebHookData $WebhookData

Now, in a few minutes, our runbook should trigger and we can monitor the result.

$Job = (Get-AzureRmAutomationJob -RunbookName WebhookNSGRule -ResourceGroupName
$AutoAcct.ResourceGroupName -AutomationAccountName
$AutoAcct.AutomationAccountName)

$Job[0] | Select-Object -Property *

ResourceGroupName : mms-eus

AutomationAccountName : testautoaccteastus2

JobId : 339601cd-14e9-4002-8fcd-7d2008726445

CreationTime : 7/24/2017 10:11:43 AM -04:00

Status : Completed

StatusDetails :

StartTime : 7/24/2017 10:12:21 AM -04:00

EndTime : 7/24/2017 10:13:31 AM -04:00

Exception :

LastModifiedTime : 7/24/2017 10:13:31 AM -04:00

LastStatusModifiedTime : 1/1/0001 12:00:00 AM +00:00

JobParameters : {}

Chapter 35 Utilizing Webhook Data in Functions and Validate Results using PowerShell

177

RunbookName : WebhookNSGRule

HybridWorker :

StartedBy :

We can start digging into the outputs of the runbook after completion to gather a little more
data.

$Job = (Get-AzureRmAutomationJob -RunbookName WebhookNSGRule -ResourceGroupName
$AutoAcct.ResourceGroupName -AutomationAccountName
$AutoAcct.AutomationAccountName)

$JobOut = Get-AzureRmAutomationJobOutput -Id $Job[0].JobId -ResourceGroupName
$AutoAcct.ResourceGroupName -AutomationAccountName
$AutoAcct.AutomationAccountName

ForEach ($JobCheck in $JobOut){

 $JobCheck.Summary

}

ForEach ($JobCheck in $JobOut){

 $JobCheck.Summary

}

Logging in to Azure...

Target computer is server1 server1 server1

Malicious IP is 183.129.160.229 183.129.160.229

Chapter 35 Utilizing Webhook Data in Functions and Validate Results using PowerShell

178

Target system is server1

Incoming MaliciousIP is 183.129.160.229

Creating rule...

And now if I check against my system, we will see that OMS is auto-generating rules for us!

$VM = (Get-AzureRmResource).where({$PSItem.Name -like 'server1'})

$Machine = Get-AzureRmVM -ResourceGroupName $VM[0].ResourceGroupName -Name
$VM[0].Name

$NSG = (Get-AzureRmNetworkSecurityGroup -ResourceGroupName
$Machine.ResourceGroupName).where({$PSItem.NetworkInterfaces.Id -eq
$Machine.NetworkProfile.NetworkInterfaces.Id})

(Get-AzureRmNetworkSecurityRuleConfig -NetworkSecurityGroup
$NSG[0]).where({$PSItem.Name -like "BlockedIP_*"})

Name : BlockedIP_206.190.36.45

Id : /subscriptions/f2007bbf-f802-4a47-
9336-
cf7c6b89b378/resourceGroups/test/providers/Microsoft.Network/netw
orkSecurityGroups/server1nsgeus2domain

Controller/securityRules/BlockedIP_206.190.36.45

Etag : W/"279e0fee-05c6-43ef-b897-
19f927dd9a40"

ProvisioningState : Succeeded

Description : Auto-Generated rule - OMS detected
malicious traffic from 206.190.36.45

Chapter 35 Utilizing Webhook Data in Functions and Validate Results using PowerShell

179

Protocol : *

SourcePortRange : *

DestinationPortRange : *

SourceAddressPrefix : 206.190.36.45

DestinationAddressPrefix : *

Access : Deny

Priority : 100

Direction : Inbound

Name : BlockedIP_183.129.160.229

Id : /subscriptions/f2007bbf-f802-4a47-
9336-
cf7c6b89b378/resourceGroups/test/providers/Microsoft.Network/netw
orkSecurityGroups/server1nsgeus2domain

Controller/securityRules/BlockedIP_183.129.160.229

Etag : W/"279e0fee-05c6-43ef-b897-
19f927dd9a40"

ProvisioningState : Succeeded

Description : Auto-Generated rule - OMS detected
malicious traffic from 183.129.160.229

Protocol : *

SourcePortRange : *

DestinationPortRange : *

Chapter 35 Utilizing Webhook Data in Functions and Validate Results using PowerShell

180

SourceAddressPrefix : 183.129.160.229

DestinationAddressPrefix : *

Access : Deny

Priority : 101

Direction : Inbound

After letting my system go for about 24 hours, my OMS Alert triggered the runbook an additional
five times. Each time generating an additional network security group rule in response to traffic
that OMS had recognized as potentially malicious, and thus remediating my problem while I
slept.

Using a monitoring tool that can tightly integrate with your automation tools is a necessity in the
age of the Cloud.

Chapter 36 Adding Configuration to your Azure Automation Account using Azure DSC

181

Chapter 36

Adding Configuration to your
Azure Automation Account
using Azure DSC

By: Will Anderson – MVP

I've been wanting write about this while, and with some of the recent changes in Azure
Automation DSC, I feel like we can now do a truly complete series. So, let's get started!

Compliance is hard as it is. And as companies start moving more workloads into the cloud, they
struggle with compliance even more so. Many organizations are moving to Infrastructure-as-a-
Service for a multitude of reasons (both good and bad). As these workloads become more
numerous, IT departments are struggling with keeping up with auditing and management
needs. Desired State Configuration, as we all know, can provide a path to not only configuring
your environments as they deploy as new workloads, but can maintain compliancy, and give you
rich reporting.

Yes. Rich reporting from Desired State Configuration, out of the box. You read it right. You can
get rich graphical reporting out of Azure Automation Desired State Configuration out of the
box. And you can even use it on-prem!

Chapter 36 Adding Configuration to your Azure Automation Account using Azure DSC

182

In this series, we're going to be discussing the push and pull methods for Desired State
Configuration in Azure. We'll be going over some of the 'gotchas' that you have to keep in mind
while deploying your configurations in the Azure environment. And we'll be talking about how
we can use hybrid workers to manage systems on-prem using the same tools.

Push vs. Pull

Desired State Configuration, like a datacenter implementation, can be handled via push or pull
method. Push method in Azure does not give you reporting, but allows you to deploy your
configurations to a new or existing environment. These configurations, and the modules
necessary to perform the configuration, are stored in a private blob that you create, and then the

Chapter 36 Adding Configuration to your Azure Automation Account using Azure DSC

183

Azure Desired State Configuration extension can be assigned that package. It is then
downloaded to the target machine, decompressed, modules installed, and the configuration
.mof file generated locally on the system.

Pull method fully uses the capabilities of the Azure Automation Account for storing modules,
configurations, and .mof compilations to deploy to systems. The target DSC nodes are registered
and monitored through the Azure Automation Account and reporting is generated and made
available through the UI. This reporting can also be forwarded to OMS Log Analytics for
dashboarding and alerting purposes.

Pros and Cons to Each

So, let's talk about some of the upsides and downsides to each method. These may affect your
decisions as you architect your DSC solution.

· Pricing - Azure DSC is essentially free. Azure Automation DSC is free for Azure nodes,
while there is a cost associated with managed on-prem nodes. This charged per month
and is dependent on how often the machines are checking in. You can get more
information on the particulars here.

· Reporting - If you're looking for rich reporting, Azure Automation DSC is definitely the
way to go. You can still get statuses from your Azure DSC nodes via PowerShell, but this
leaves the onus on you to format that data and make it look pretty. We'll be taking a
look at how we can do this a bit later.

· Flexibility - Azure Automation DSC allows you to use modules stored in your Azure
Automation Account. If you wish to use a new module, you simply add that module,
update your configuration file, and recompile. With Azure DSC, you need to repackage
your configuration with all of the modules, re-publish them, and re-push them to your
target machines.

· Side-by-Side Module Versioning Tolerance - Currently, Azure DSC actually has an
advantage over Azure Automation DSC in this respect. You cannot currently have
multiple module versions in your module repository. So if you're using Automation DSC
and calling the same DSC resources in multiple configs, they need to all be on that same
module version.

Chapter 36 Adding Configuration to your Azure Automation Account using Azure DSC

184

· On-Prem Management Capabilities - Azure Automation DSC has the ability to manage
on-prem virtual machines, either directly or via Hybrid Workers. This gives you the
ability to manage all of your virtual machines and monitor their configuration status
from a single pane of glass. Azure DSC does not have this capability.

· Managing Systems in AWS - Yes. You can also manage your virtual machines in AWS
using the AWS DSC Toolkit via Azure Automation DSC!

So that's the overview of what we're going to be talking about through this series. Tomorrow,
we'll be getting into how to add configurations into Azure Automation DSC and compiling your
configs.

Things to Consider

When building configurations for Azure DSC (or anything where we are pulling pre-created .mof
files from), there are some things that we need to keep in mind.

Don't embed PowerShell scripts in your configurations. - I spent a lot of time cleaning up my own
configurations when learning Azure Automation DSC. When configurations are compiled, they're
done so on a virtual machine hidden under the covers and can cause some unexpected
behaviours. Some of the issues that I ran into were:

· Using environment variables like $env:COMPUTERNAME - This actually caused me a lot
of headaches when I started building systems that were being joined to a domain. The
name of the instance that compiles the .mof will be used for $env:COMPUTERNAME
instead of the target computer name and you'll be banging your head on the table
wondering what happened. Some of the resources that have been published in the
gallery have been updated to use a 'localhost' option as a computer name input, such as
xActiveDirectory. This takes care of a lot of those headaches.

· Using Parenthetical Commands to establish values - Using something like Get-
NetAdapter in a parenthetical argument to get a network adapter of your target system
and pass the needed values on to your DSC Resource Providers won't work for the same
reasons as above. In this instance, I received a vague error indicating that I was passing
an invalid property, and took a little bit of time before I understood what was going on.

Chapter 36 Adding Configuration to your Azure Automation Account using Azure DSC

185

· I also ran into an issue with compiling a configuration because I had been using Set-Item
to configure the WSMan maxEnvelopeSize in my configs because they can get really
big. The error that I received was that WSMan wasn't installed on the machine. It took
me a bit to realize that this was because the machine compiling the .mof didn't have
WSMan running on the box and it was blowing up on the config.

Instead, if you need to run PowerShell scripts ahead of your deployment, you can use the custom
script extension to perform those tasks in Azure, or just put the script into your image on-
prem. There is one exception to this, and that's what we'll be talking about next.

Leverage Azure Automation Credential storage where possible - Passing credentials in as a
parameter can cause all kinds of issues.

· First and foremost, anyone that is building or deploying those configurations will know
those credentials.

· Second of all, it brings the possibility of someone tripping over the keyboard and
entering a credential in improperly.

Allowing Azure Automation to tap the credential store during .mof compilation allows to
credentials to stay in a secured bubble through the entire process. To pass a credential from
Azure Automation to your config, you need to modify the configuration. Simply call Get-
AutomationPSCredential to a variable inside your configuration, and then set that variable
wherever those credentials are required. Like so:

 $AdminCreds = Get-AutomationPSCredential -Name $AdminName

 Node ($AllNodes.Where{$_.Role -eq "WebServer"}).NodeName

 {

 JoinDomain DomainJoin

 {

 DependsOn = "[WindowsFeature]RemoveUI"

 DomainName = $DomainName

Chapter 36 Adding Configuration to your Azure Automation Account using Azure DSC

186

 Admincreds = $Admincreds

 RetryCount = 20

 RetryIntervalSec = 60

 }

 }

Azure Automation under the covers will authenticate to the Credentials store with the RunAs
account, and then pass those credentials as PSCredential to your DSC resource provider.

Stop Using localhost (or a specific computer name) as the Node Name - Azure Automation DSC
allows you to use genericized, but meaningful names to configurations instead of just assigning
things to localhost. So now you can use webServer, or domainController, or something that
describes the role instead of a machine name. This makes it much easier to decide which
configuration should go to what machine.

Chapter 36 Adding Configuration to your Azure Automation Account using Azure DSC

187

Upload the Configuration
So much like in my previous series on Azure Automation and OMS, we're going to upload our
DSC resources to our Automation Account's modules directory. This requires getting the
automation account, zipping up our local module files, sending them to a blob store, and
importing those modules from the blob store. I've sectioned out the code into different regions
to better break it down for your own purposes.

#region GetAutomationAccount

$AutoResGrp = Get-AzureRmResourceGroup -Name 'mms-eus'

$AutoAcct = Get-AzureRmAutomationAccount -ResourceGroupName
$AutoResGrp.ResourceGroupName

#endregion

#region compress configurations

 Set-Location C:\Scripts\Presentations\AzureAutomationDSC\ResourcesToUpload

 $Modules = Get-ChildItem -Directory

 ForEach ($Mod in $Modules){

 Compress-Archive -Path $Mod.PSPath -DestinationPath ((Get-Location).Path
+ '\' + $Mod.Name + '.zip') -Force

 }

#endregion

#region Access blob container

Chapter 36 Adding Configuration to your Azure Automation Account using Azure DSC

188

$StorAcct = Get-AzureRmStorageAccount -ResourceGroupName
$AutoAcct.ResourceGroupName

Add-AzureAccount

$AzureSubscription = ((Get-AzureSubscription).where({$PSItem.SubscriptionName -
eq $Sub.Name}))

Select-AzureSubscription -SubscriptionName $AzureSubscription.SubscriptionName -
Current

$StorKey = (Get-AzureRmStorageAccountKey -ResourceGroupName
$StorAcct.ResourceGroupName -Name
$StorAcct.StorageAccountName).where({$PSItem.KeyName -eq 'key1'})

$StorContext = New-AzureStorageContext -StorageAccountName
$StorAcct.StorageAccountName -StorageAccountKey $StorKey.Value

$Container = Get-AzureStorageContainer -Name ('modules') -Context $StorContext

#endregion

#region upload zip files

$ModulesToUpload = Get-ChildItem -Filter "*.zip"

ForEach ($Mod in $ModulesToUpload){

 $Blob = Set-AzureStorageBlobContent -Context $StorContext -Container
$Container.Name -File $Mod.FullName -Force

 New-AzureRmAutomationModule -ResourceGroupName
$AutoAcct.ResourceGroupName -AutomationAccountName
$AutoAcct.AutomationAccountName -Name ($Mod.Name).Replace('.zip','') -
ContentLink $Blob.ICloudBlob.Uri.AbsoluteUri

}

Chapter 36 Adding Configuration to your Azure Automation Account using Azure DSC

189

#endregion

Once we've uploaded our files, we can monitor them to ensure that they've imported
successfully via the UI, or by using the Get-AzureRmAutomationModule command.

Get-AzureRmAutomationModule -Name LWINConfigs -ResourceGroupName
$AutoAcct.ResourceGroupName -AutomationAccountName $AutoAcct.AutomationAccountNa

me

ResourceGroupName : mms-eus

AutomationAccountName : testautoaccteastus2

Name : LWINConfigs

IsGlobal : False

Version : 1.0.0.0

Chapter 36 Adding Configuration to your Azure Automation Account using Azure DSC

190

SizeInBytes : 5035

ActivityCount : 1

CreationTime : 9/13/2017 9:56:10 AM -04:00

LastModifiedTime : 9/13/2017 9:57:26 AM -04:00

ProvisioningState : Succeeded

Compile the Configuration
Once we've uploaded our modules, we can then upload and compile our configuration. For this,
we'll use the Import-AzureRmAutomationDscConfiguration command. But before we do, there's
two things to note when formatting a configuration for deployment to Azure Automation DSC.

· The configuration name has to match the name of the configuration file. So if your
configuration is called SqlServerConfig, your config file has to be called
SqlServerConfig.ps1.

· The sourcepath parameter errors out with an 'invalid argument specified' error if you use
a string path. Instead, it works if you use (Get-Item).FullName

We'll be casting this command to a variable, as we'll be using it later on when we compile the
configuration. You'll also want to use the publish parameter to publish the configuration after
importation, and if you're overwriting a configuration you'll want to leverage the force
parameter.

$Config = Import-AzureRmAutomationDscConfiguration -SourcePath (Get-Item
C:\Scripts\Presentations\AzureAutomationDSC\TestConfig.ps1).FullName -
AutomationAccountName $AutoAcct.AutomationAccountName -ResourceGroupName
$AutoAcct.ResourceGroupName -Description DemoConfiguration -Published -Force

Chapter 36 Adding Configuration to your Azure Automation Account using Azure DSC

191

Now that our configuration is published, we can compile it. So let's add our parameters and
configuration data:

$Parameters = @{

 'DomainName' = 'lwinerd.local'

 'ResourceGroupName' = $AutoAcct.ResourceGroupName

 'AutomationAccountName' = $AutoAcct.AutomationAccountName

 'AdminName' = 'lwinadmin'

}

$ConfigData =

@{

 AllNodes =

 @(

 @{

 NodeName = "*"

 PSDscAllowPlainTextPassword = $true

 },

Chapter 36 Adding Configuration to your Azure Automation Account using Azure DSC

192

 @{

 NodeName = "webServer"

 Role = "WebServer"

 }

 @{

 NodeName = "domainController"

 Role = "domaincontroller"

 }

)

}

You'll notice that I have PSDscAllowPlainTextPassword set to true for all of my nodes. This is to
allow the PowerShell instance on the compilation node to compile the configuration with
credentials being passed into it. This PowerShell instance isn't aware that once the .mof is
compiled, it is encrypted by Azure Automation before it's stored in the Automation Account.

Now that we have our parameters and configuration data set, we can pass this to our Start-
AzureRmAutomationDscCompilationJob command to kick off the .mof compilation.

$DSCComp = Start-AzureRmAutomationDscCompilationJob -AutomationAccountName
$AutoAcct.AutomationAccountName -ConfigurationName $Config.Name -
ConfigurationData $ConfigData -Parameters $Parameters -ResourceGroupName
$AutoAcct.ResourceGroupName

And now we can use the Get-AzureRmAutomationDscCompilationJob command to check the
status of the compilation, or check through the UI.

Chapter 36 Adding Configuration to your Azure Automation Account using Azure DSC

193

Get-AzureRmAutomationDscCompilationJob -Id $DSCComp.Id -ResourceGroupName
$AutoAcct.ResourceGroupName -AutomationAccountName
$AutoAcct.AutomationAccountName

The compilation itself can take up to around five minutes, so grab yourself a cup of coffee. Once
it returns as complete, we can get to registering our endpoints and delivering our configurations
to them.

Chapter 36 Adding Configuration to your Azure Automation Account using Azure DSC

194

Chapter 37 Onboarding Automation DSC Endpoints and Reporting

195

Chapter 37

Onboarding Automation DSC
Endpoints and Reporting

By: Will Anderson - MVP

In the last chapter we talked about modifying and uploading our configurations to Azure
Automation DSC. We were able to import credentials from Azure's Automation Account
Credential store, and then compile the .mof files in the automation account for deployment. In
this chapter, we'll be looking at how we apply those configurations to existing systems via
PowerShell. Then we'll take a look at some of the reporting available via Azure Automation DSC
and send those reports over to Operations Management Suite for dashboarding.

So, when we left off. We successfully published our configurations in Automation DSC. If we run
Get-AzureRmAutomationDscNodeConfiguration against the configuration I published, we get the
following:

Get-AzureRmAutomationDscNodeConfiguration -ResourceGroupName
$AutoAcct.ResourceGroupName -AutomationAccountName
$AutoAcct.AutomationAccountName -ConfigurationName TestConfig

Chapter 37 Onboarding Automation DSC Endpoints and Reporting

196

As you can see, when we published the configuration, it generated two configuration .mofs
based on our node names - domainController and webServer. Now of course, we're not going to
be calling our servers webServer and domainController, rather, these are generalized names for
our configurations. We get the root configuration (TestConfig), and then the node specific
configuration based on the root document (webServer or domainController). This gives us a lot
of flexibility as we can now statefully name our configurations, and assign them to machines
without dealing with guids or having all of the mofs defined by a computer name or any other
nonsense! We just assign what named configuration goes to what system, and away we go.

We don't even really care what the computer name is, as long as the correct config gets
assigned. This is really helpful when working on Azure Resource Manager templates, because I
don't even really know what the system name will be until runtime. I just designate a set of
systems as 'webServer', assign the config and deploy.

Register the Virtual Machine

So, let's go ahead and get a system that we want to target. I just so happen to have one in Azure
right here:

$TargetResGroup = 'nrdtste'

$VMName = 'ctrxeusdbnp01'

$VM = Get-AzureRmVM -ResourceGroupName $TargetResGroup -Name $VMName

Now that we have our VM object, we're going to create a hash-table with some configuration
items for the DSC Local Configuration Manager on the target system.

Chapter 37 Onboarding Automation DSC Endpoints and Reporting

197

$DSCLCMConfig = @{

 'ConfigurationMode' = 'ApplyAndAutocorrect'

 'RebootNodeIfNeeded' = $true

 'ActionAfterReboot' = 'ContinueConfiguration'

}

Once we have all of this, we can now go ahead and register our target node in Automation DSC
using the Register-AzureRmAutomationDscNode command.

Register-AzureRmAutomationDscNode -AzureVMName $VM.Name -AzureVMResourceGroup
$VM.ResourceGroupName -AzureVMLocation $VM.Location -AutomationAccountName
$AutoAcct.AutomationAccountName -ResourceGroupName $AutoAcct.ResourceGroupName
@DSCLCMConfig

You might note with this command that you can also assign it a configuration as you register the
node. However, I've had occasional issues with this method. So we're going to go ahead and
register the node first, then assign the configuration. As another note, while the system is being
registered, the command will hold your session until it returns a success or failure. So grab
another cup of coffee and enjoy it for a few minutes while we wait.

Chapter 37 Onboarding Automation DSC Endpoints and Reporting

198

Apply a Configuration

Now we can see our machine has registered successfully. But if we run the Get-
AzureRmAutomationDscNode command, we can see that the NodeConfigurationName property
is empty. So, let's fix that.

What we need to do is capture the configuration we want to apply, so we do this by grabbing it
with Get-AzureRmAutomationDscNodeConfiguration. Then, we'll capture the target DSC
endpoint with the Get command we previously used, and cast both objects to our Set-
AzureRmAutomationDscNode command to apply the configuration to the appropriate node.

Chapter 37 Onboarding Automation DSC Endpoints and Reporting

199

$Configuration = Get-AzureRmAutomationDscNodeConfiguration -
AutomationAccountName $AutoAcct.AutomationAccountName -ResourceGroupName
$AutoAcct.ResourceGroupName -Name 'CompositeConfig.webServer'

$TargetNode = Get-AzureRmAutomationDscNode -Name $VM.Name -ResourceGroupName
$AutoAcct.ResourceGroupName -AutomationAccountName
$AutoAcct.AutomationAccountName

Set-AzureRmAutomationDscNode -Id $TargetNode.Id -NodeConfigurationName
$Configuration.Name -AutomationAccountName $AutoAcct.AutomationAccountName -
ResourceGroupName $AutoAcct.ResourceGroupName -Verbose -Force

After a couple of seconds, we can see that the configuration has been assigned to our
node. Once the LCM hits it's next review cycle, it'll pick up the configuration and start applying:

We can check on the status of our target node by using the Get-
AzureRmAutomationDscNodeReport command like so to get some useful information:

Get-AzureRmAutomationDscNodeReport -NodeId $TargetNode.Id -ResourceGroupName
$AutoAcct.ResourceGroupName -AutomationAccountName
$AutoAcct.AutomationAccountName -Latest

Chapter 37 Onboarding Automation DSC Endpoints and Reporting

200

And it will output some pretty useful information.

Azure Automation DSC Reports

This is where I have to admit that the UI really shines. You can see all of your systems at a
glance, with what configuration is assigned and it's current state.

Chapter 37 Onboarding Automation DSC Endpoints and Reporting

201

Furthermore, you can actually drill down through the nodes to see what resources are being
applied, what their dependencies are, and what the state of the particular configuration item is.

Chapter 37 Onboarding Automation DSC Endpoints and Reporting

202

There is a wealth of data that you can find here in an easy to read dashboard. Furthermore, you
can connect this to a Log Analytics instance (or other products that support restful API), and ship
it up for alerting and more dashboarding.

Connecting to Log Analytics

So connecting your Azure Automation DSC is pretty straightforward. To be able to use it, you
need to have an OMS tier that includes the Automation and Control offering to start. If you do,
then all you have to do is follow a couple of simple commands.

Chapter 37 Onboarding Automation DSC Endpoints and Reporting

203

First, we have to get the resourceIds for the Automation Account and the Log Analytics
workspace.

#Get the resourceId of the automation account.

$AutoAcctResource = Find-AzureRmResource -ResourceType
"Microsoft.Automation/automationAccounts" -ResourceNameContains
'testautoaccteastus2'

#Get the resourceId of the Log Analytics Workspace

$LogAnalyticsResource = Find-AzureRmResource -ResourceType
"Microsoft.OperationalInsights/workspaces" -ResourceNameContains 'LWINerd'

Then we can use those resourceIds to pass to Set-AzureRmDiagnosticSetting and specify our
DSCNodeStatus category.

Set-AzureRmDiagnosticSetting -ResourceId $AutoAcctResource.ResourceId -
WorkspaceId $LogAnalyticsResource.ResourceId -Enabled $true -Categories
"DscNodeStatus" -Verbose

Then you'll get a return similar to this:

Set-AzureRmDiagnosticSetting -ResourceId $AutoAcctResource.ResourceId -
WorkspaceId $LogAnalyticsResource.ResourceId -Enabled $true -Categories "D

scNodeStatus" -Verbose

StorageAccountId :

Chapter 37 Onboarding Automation DSC Endpoints and Reporting

204

ServiceBusRuleId :

EventHubAuthorizationRuleId :

Metrics

 TimeGrain : PT1M

 Enabled : False

 RetentionPolicy

 Enabled : False

 Days : 0

Logs

 Category : JobLogs

 Enabled : False

 RetentionPolicy

 Enabled : False

 Days : 0

 Category : JobStreams

 Enabled : False

 RetentionPolicy

Chapter 37 Onboarding Automation DSC Endpoints and Reporting

205

 Enabled : False

 Days : 0

 Category : DscNodeStatus

 Enabled : True

 RetentionPolicy

 Enabled : False

 Days : 0

WorkspaceId : /subscriptions/f2007bbf-f802-4a47-
9336-cf7c6b89b378/resourceGroups/mms-
eus/providers/Microsoft.OperationalInsights/workspaces/LWINerd

Id :

/subscriptions/f2007bbf-f802-4a47-9336-
cf7c6b89b378/resourcegroups/mms-
eus/providers/microsoft.automation/automationaccounts/testautoacc
teastus2/providers/microsoft.insights/diagnosticSettings/service

Name : service

Type :

Location :

Tags :

Chapter 37 Onboarding Automation DSC Endpoints and Reporting

206

After a little while, we can check back to our log search and start performing queries and
configuring alerts.

So that's Azure Automation DSC in a nutshell! But don't worry, I haven't forgotten about Azure
DSC's push method. We will be talking about that in the next chapter.

Chapter 38 Publishing Configurations and Pushing them with Azure DSC

207

Chapter 38

Publishing Configurations
and Pushing them with Azure
DSC

By: Will Anderson – MVP

So, we've talked about Azure Automation DSC and the extensive reporting we can get from
it. With the pricing as it is, it would be hard to argue as to why you would want to use anything
else. But I'm a completionist, and there may be some edge cases that might come up where you
wouldn't be able to use the pull method for configurations. So let's talk about how you can use
Azure DSC to push a configuration to a virtual machine.

So, let's get started!

Publish the Configuration

In order to push a configuration, we need to publish it to a blob store. When you use Publish-
AzureRmVmDscConfiguration, the command bundles all of the required modules along with the
configuration into a .zip file. It does this by pulling the modules from your local machine that
you're running the command from, so you'll need to make sure that you have the appropriate
modules installed on your system.

First, we'll go ahead and grab a storage account where these binaries can be published. In the
storage account, we have a blob store for our configurations. This blob store is a private store.

Chapter 38 Publishing Configurations and Pushing them with Azure DSC

208

$AutoResGrp = Get-AzureRmResourceGroup -Name 'mms-eus'

$StorAcct = Get-AzureRmStorageAccount -ResourceGroupName
$AutoResGrp.ResourceGroupName -Name 'modulestor'

Now that we have our private store, we're going to publish our configuration using the Publish-
AzureRmVMDscConfiguration command.

$DSCBlob = Publish-AzureRmVMDscConfiguration -ConfigurationPath
C:\Scripts\Configs\cmdpconfig.ps1 -ResourceGroupName $StorAcct.ResourceGroupName
-ContainerName 'dscpushconfig' -StorageAccountName $StorAcct.StorageAccountName
-Force

$Archive = $DSCBlob.Split('/') | Select-Object -Last 1

As previously mentioned, the command reads your configuration, and then grabs the necessary
modules from your local machine and adds them to the package when it publishes the
configuration. This way, the machine has all of the necessary bits to perform the
configuration. You can actually validate this by downloading the packaged .zip file from the blob
store and seeing for yourself.

Along with the modules and configuration, you'll also find a dscmetadata.json file that is
essentially a manifest of the required modules.

Chapter 38 Publishing Configurations and Pushing them with Azure DSC

209

Install the VM Extensions

Now that our binaries have been published, we can get our target machine and deploy the Azure
DSC VM extension to it while assigning the configuration. When you deploy the extension, it's
best to use the latest version available. If you want to check which version is the latest, you can
check out the release history on the PowerShell Team Blog.

$ArmVmRsg = Get-AzureRmResourceGroup -Name 'nrdtste'

$ArmVm = Get-Azurermvm -ResourceGroupName $ArmVmRsg.ResourceGroupName -Name
'ctrxeusdbnp01'

Set-AzureRmVMDscExtension -ArchiveResourceGroupName $StorAcct.ResourceGroupName
-ArchiveBlobName $Archive -ResourceGroupName $ArmVm.ResourceGroupName -
ArchiveStorageAccountName $StorAcct.StorageAccountName -ArchiveContainerName
'dscpushconfig' -Version '2.26' -VMName $ArmVm.Name -ConfigurationName
'CMDPConfig' -Verbose

Like with Azure Automation DSC, when you register the VM extension, your PowerShell session
will be held open until the extension returns a success or failure status. Once it returns, you can
check the status of the configuration using Get-AzureRmVmDscExtensionStatus.

Chapter 38 Publishing Configurations and Pushing them with Azure DSC

210

Get-AzureRmVMDscExtensionStatus -ResourceGroupName $ArmVm.ResourceGroupName -
VMName $ArmVm.Name

ResourceGroupName : nrdtst3

VmName : ctrxeusdbnp01

Version : 2.26

Status : Provisioning succeeded

StatusCode : ProvisioningState/succeeded

Timestamp : 10/9/2017 1:12:22 PM

StatusMessage : DSC configuration was applied successfully.

DscConfigurationLog : {[2017-10-09 13:11:18Z] [VERBOSE]
[ctrxeusdbnp01]:
[[WindowsFeature]RemoveUI] The operation 'Get-WindowsFeature'
succeeded: Server-Gui-Shell, [2017-10-09

 13:11:18Z] [VERBOSE] [ctrxeusdbnp01]: LCM:
[End Test] [[WindowsFeature]RemoveUI] in 9.5980
seconds., [2017-10-09 13:11:18Z] [VERBOSE] [ctrxeusdbnp01]: LCM:
[Start Set

] [[WindowsFeature]RemoveUI], [2017-10-09
13:11:19Z] [VERBOSE] [ctrxeusdbnp01]:
[[WindowsFeature]RemoveUI] Uninstallation started......}

If you want to dive a little deeper, we can of course grab the specific DscConfigurationLog
information:

Chapter 38 Publishing Configurations and Pushing them with Azure DSC

211

(Get-AzureRmVMDscExtensionStatus -ResourceGroupName $ArmVm.ResourceGroupName -
VMName $Armvm.Name).DscConfigurationLog

[2017-10-09 13:11:18Z] [VERBOSE] [ctrxeusdbnp01]:
[[WindowsFeature]RemoveUI] The operation 'Get-WindowsFeature'
succeeded: Server-Gui-Shell

[2017-10-09 13:11:18Z] [VERBOSE] [ctrxeusdbnp01]: LCM: [End
Test] [[WindowsFeature]RemoveUI] in 9.5980 seconds.

[2017-10-09 13:11:18Z] [VERBOSE] [ctrxeusdbnp01]: LCM: [Start
Set] [[WindowsFeature]RemoveUI]

[2017-10-09 13:11:19Z] [VERBOSE] [ctrxeusdbnp01]:
[[WindowsFeature]RemoveUI] Uninstallation started...

[2017-10-09 13:11:19Z] [VERBOSE] [ctrxeusdbnp01]:
[[WindowsFeature]RemoveUI] Continue with removal?

[2017-10-09 13:11:19Z] [VERBOSE] [ctrxeusdbnp01]:
[[WindowsFeature]RemoveUI] Prerequisite processing started...

[2017-10-09 13:11:24Z] [VERBOSE] [ctrxeusdbnp01]:
[[WindowsFeature]RemoveUI] Prerequisite processing succeeded.

[2017-10-09 13:12:21Z] [WARNING] [ctrxeusdbnp01]:
[[WindowsFeature]RemoveUI] You must restart this server to finish
the removal process.

[2017-10-09 13:12:21Z] Settings handler status to 'transitioning'
(C:\Packages\Plugins\Microsoft.Powershell.DSC\2.26.1.0\Status\0.s
tatus)

[2017-10-09 13:12:21Z] [VERBOSE] [ctrxeusdbnp01]:
[[WindowsFeature]RemoveUI] Uninstallation succeeded.

[2017-10-09 13:12:21Z] [VERBOSE] [ctrxeusdbnp01]:
[[WindowsFeature]RemoveUI] Successfully uninstalled the feature
Server-Gui-Shell.

Chapter 38 Publishing Configurations and Pushing them with Azure DSC

212

[2017-10-09 13:12:21Z] [VERBOSE] [ctrxeusdbnp01]:
[[WindowsFeature]RemoveUI] The Target machine needs to be
restarted.

[2017-10-09 13:12:21Z] [VERBOSE] [ctrxeusdbnp01]: LCM: [End
Set] [[WindowsFeature]RemoveUI] in 62.7090 seconds.

[2017-10-09 13:12:21Z] [VERBOSE] [ctrxeusdbnp01]: LCM: [End
Resource] [[WindowsFeature]RemoveUI]

[2017-10-09 13:12:21Z] [VERBOSE] [ctrxeusdbnp01]:
[] A reboot is required to progress further. Please reboot the
system.

[2017-10-09 13:12:21Z] [WARNING] [ctrxeusdbnp01]:
[] A reboot is required to progress further. Please reboot the
system.

[2017-10-09 13:12:21Z] [VERBOSE] [ctrxeusdbnp01]: LCM: [End
Set]

[2017-10-09 13:12:21Z] [VERBOSE] [ctrxeusdbnp01]: LCM: [End
Set] in 74.8080 seconds.

[2017-10-09 13:12:21Z] [VERBOSE] Operation 'Invoke CimMethod'
complete.

[2017-10-09 13:12:21Z] [VERBOSE] Time taken for configuration job
to complete is 75.071 seconds

As you can see, the configuration is complete pending a reboot. This brings us to a few of the
caveats associated with the push method for Azure DSC.

· Unfortunately, unlike with the Register-AzurRmAutomationDscNodeConfiguration
command available for Azure Automation, you cannot currently configure the LCM direct
from the command. Instead, you'll want to add a LocalConfigurationManager block to
your top level config to set any attributes for the LCM.

Chapter 38 Publishing Configurations and Pushing them with Azure DSC

213

· As the system is downloading the packaged modules and configuration files, the mof file
is configured locally on the machine. While the current.mof file is encrypted, there is a
copy of the mof that is generated in the
C:\Packages\Plugins\Microsoft.Powershell.DSC\<pluginVersion>\<configuration>\
directory. You'll want to be careful as to what you're passing in plain text in that regard.

· You can retrieve the DscConfigurationLog data for validation of your configs and the
state of the machines, but this process requires automation and can take some time to
compile.

So, now we've explore Azure Desired State Configuration using the available push and pull
methods. And we've explored the rich reporting capabilities that are available to you in Azure
Automation DSC. It's been a long journey, but I hope you've found this content to be useful to
you!

Chapter 39 Testing RDMA Connectivity with PowerShell

214

Chapter 39

Testing RDMA Connectivity
with PowerShell

By: Dave Kawula – MVP

I have been doing a lot of deployments of Microsoft Hyper Converged Storage solution called
Storage Spaces Direct. Part of this configuration is setting up the network stack properly. I
found this lovely little script from Microsoft to help us with just that

This script from Microsoft can be downloaded from here:
https://github.com/Microsoft/SDN/blob/master/Diagnostics/Test-Rdma.ps1

It includes some great little options to run not only all your core RDMA Tests and gain a better
understanding of the RDMA PowerShell Commands but also includes a cool DiskSpd.exe test to
validate connectivity to a remote host.

Chapter 39 Testing RDMA Connectivity with PowerShell

215

Here is the script itself:

[CmdletBinding()]

Chapter 39 Testing RDMA Connectivity with PowerShell

216

Param(

 [Parameter(Mandatory=$True, Position=1, HelpMessage="Interface index of the
adapter for which RDMA config is to be verified")]

 [string] $IfIndex,

 [Parameter(Mandatory=$True, Position=2, HelpMessage="True if underlying fabric
type is RoCE. False for iWarp or IB")]

 [bool] $IsRoCE,

 [Parameter(Position=3, HelpMessage="IP address of the remote RDMA adapter")]

 [string] $RemoteIpAddress,

 [Parameter(Position=4, HelpMessage="Full path to the folder containing
diskspd.exe")]

 [string] $PathToDiskspd

)

if ($RemoteIpAddress -ne $null)

{

 if (($PathToDiskspd -eq $null) -Or ($PathToDiskspd -eq ''))

 {

 $PathToDiskspd = "C:\Windows\System32"

 }

 $FullPathToDiskspd = $PathToDiskspd + "\diskspd.exe"

 if ((Test-Path $FullPathToDiskspd) -eq $false)

 {

 Write-Host "ERROR: Diskspd.exe not found at" $FullPathToDiskspd ".
Please download diskspd.exe and place it in the specified location. Exiting." -
ForegroundColor Red

 return

 }

 else

 {

 Write-Host "VERBOSE: Diskspd.exe found at" $FullPathToDiskspd

 }

Chapter 39 Testing RDMA Connectivity with PowerShell

217

}

$rdmaAdapter = Get-NetAdapter -IfIndex $IfIndex

if ($rdmaAdapter -eq $null)

{

 Write-Host "ERROR: The adapter with interface index $IfIndex not found" -
ForegroundColor Red

 return

}

$rdmaAdapterName = $rdmaAdapter.Name

$virtualAdapter = Get-VMNetworkAdapter -ManagementOS | where DeviceId -eq
$rdmaAdapter.DeviceID

if ($virtualAdapter -eq $null)

{

 $isRdmaAdapterVirtual = $false

 Write-Host "VERBOSE: The adapter $rdmaAdapterName is a physical adapter"

}

else

{

 $isRdmaAdapterVirtual = $true

 Write-Host "VERBOSE: The adapter $rdmaAdapterName is a virtual adapter"

}

$rdmaCapabilities = Get-NetAdapterRdma -InterfaceDescription
$rdmaAdapter.InterfaceDescription

if ($rdmaCapabilities -eq $null -or $rdmaCapabilities.Enabled -eq $false)

{

Chapter 39 Testing RDMA Connectivity with PowerShell

218

 Write-Host "ERROR: The adapter $rdmaAdapterName is not enabled for RDMA" -
ForegroundColor Red

 return

}

if ($rdmaCapabilities.MaxQueuePairCount -eq 0)

{

 Write-Host "ERROR: RDMA capabilities for adapter $rdmaAdapterName are not
valid : MaxQueuePairCount is 0" -ForegroundColor Red

 return

}

if ($rdmaCapabilities.MaxCompletionQueueCount -eq 0)

{

 Write-Host "ERROR: RDMA capabilities for adapter $rdmaAdapterName are not
valid : MaxCompletionQueueCount is 0" -ForegroundColor Red

 return

}

$smbClientNetworkInterfaces = Get-SmbClientNetworkInterface

if ($smbClientNetworkInterfaces -eq $null)

{

 Write-Host "ERROR: No network interfaces detected by SMB (Get-
SmbClientNetworkInterface)" -ForegroundColor Red

 return

}

$rdmaAdapterSmbClientNetworkInterface = $null

foreach ($smbClientNetworkInterface in $smbClientNetworkInterfaces)

{

 if ($smbClientNetworkInterface.InterfaceIndex -eq $IfIndex)

Chapter 39 Testing RDMA Connectivity with PowerShell

219

 {

 $rdmaAdapterSmbClientNetworkInterface = $smbClientNetworkInterface

 }

}

if ($rdmaAdapterSmbClientNetworkInterface -eq $null)

{

 Write-Host "ERROR: No network interfaces found by SMB for adapter
$rdmaAdapterName (Get-SmbClientNetworkInterface)" -ForegroundColor Red

 return

}

if ($rdmaAdapterSmbClientNetworkInterface.RdmaCapable -eq $false)

{

 Write-Host "ERROR: SMB did not detect adapter $rdmaAdapterName as RDMA
capable. Make sure the adapter is bound to TCP/IP and not to other protocol like
vmSwitch." -ForegroundColor Red

 return

}

$rdmaAdapters = $rdmaAdapter

if ($isRdmaAdapterVirtual -eq $true)

{

 Write-Host "VERBOSE: Retrieving vSwitch bound to the virtual adapter"

 $switchName = $virtualAdapter.SwitchName

 Write-Host "VERBOSE: Found vSwitch: $switchName"

 $vSwitch = Get-VMSwitch -Name $switchName

 $rdmaAdapters = Get-NetAdapter -InterfaceDescription
$vSwitch.NetAdapterInterfaceDescriptions

 $vSwitchAdapterMessage = "VERBOSE: Found the following physical adapter(s)
bound to vSwitch: "

 $index = 1

 foreach ($qosAdapter in $rdmaAdapters)

Chapter 39 Testing RDMA Connectivity with PowerShell

220

 {

 $qosAdapterName = $qosAdapter.Name

 $vSwitchAdapterMessage = $vSwitchAdapterMessage +
[string]$qosAdapterName

 if ($index -lt $rdmaAdapters.Length)

 {

 $vSwitchAdapterMessage = $vSwitchAdapterMessage + ", "

 }

 $index = $index + 1

 }

 Write-Host $vSwitchAdapterMessage

}

if ($IsRoCE -eq $true)

{

 Write-Host "VERBOSE: Underlying adapter is RoCE. Checking if QoS/DCB/PFC is
configured on each physical adapter(s)"

 foreach ($qosAdapter in $rdmaAdapters)

 {

 $qosAdapterName = $qosAdapter.Name

 $qos = Get-NetAdapterQos -Name $qosAdapterName

 if ($qos.Enabled -eq $false)

 {

 Write-Host "ERROR: QoS is not enabled for adapter $qosAdapterName" -
ForegroundColor Red

 return

 }

 if ($qos.OperationalFlowControl -eq "All Priorities Disabled")

 {

Chapter 39 Testing RDMA Connectivity with PowerShell

221

 Write-Host "ERROR: Flow control is not enabled for adapter
$qosAdapterName" -ForegroundColor Red

 return

 }

 }

 Write-Host "VERBOSE: QoS/DCB/PFC configuration is correct."

}

Write-Host "VERBOSE: RDMA configuration is correct."

if ($RemoteIpAddress -ne '')

{

 Write-Host "VERBOSE: Checking if remote IP address, $RemoteIpAddress, is
reachable."

 $canPing = Test-Connection $RemoteIpAddress -Quiet

 if ($canPing -eq $false)

 {

 Write-Host "ERROR: Cannot reach remote IP $RemoteIpAddress" -
ForegroundColor Red

 return

 }

 else

 {

 Write-Host "VERBOSE: Remote IP $RemoteIpAddress is reachable."

 }

}

if ($RemoteIpAddress -eq '')

{

 Write-Host "VERBOSE: Remote IP address was not provided. If RDMA does not
work, make sure that remote IP address is reachable."

Chapter 39 Testing RDMA Connectivity with PowerShell

222

}

else

{

 Write-Host "VERBOSE: Disabling RDMA on adapters that are not part of this
test. RDMA will be enabled on them later."

 $adapters = Get-NetAdapterRdma

 $InstanceIds = $rdmaAdapters.InstanceID;

 $adaptersToEnableRdma = @()

 foreach ($adapter in $adapters)

 {

 if ($adapter.Enabled -eq $true)

 {

 if (($adapter.InstanceID -notin $InstanceIds) -And
($adapter.InstanceID -ne $rdmaAdapter.InstanceID))

 {

 $adaptersToEnableRdma += $adapter

 Disable-NetAdapterRdma -Name $adapter.Name

 }

 }

 }

 Write-Host "VERBOSE: Testing RDMA traffic now for. Traffic will be sent in a
parallel job. Job details:"

 $ScriptBlock = {

 param($RemoteIpAddress, $PathToDiskspd)

 cd $PathToDiskspd

 .\diskspd.exe -b4K -c10G -t4 -o16 -d100000 -L -Sr -d30
\\$RemoteIpAddress\C$\testfile.dat

 }

Chapter 39 Testing RDMA Connectivity with PowerShell

223

 $thisJob = Start-Job $ScriptBlock -ArgumentList
$RemoteIpAddress,$PathToDiskspd

 $RdmaTrafficDetected = $false

 # Check Perfmon counters while the job is running

 While ((Get-Job -id $($thisJob).Id).state -eq "Running")

 {

 $written = Get-Counter -Counter "\SMB Direct Connection(_Total)\Bytes
RDMA Written/sec" -ErrorAction Ignore

 $sent = Get-Counter -Counter "\SMB Direct Connection(_Total)\Bytes
Sent/sec" -ErrorAction Ignore

 if ($written -ne $null)

 {

 $RdmaWriteBytesPerSecond = [uint64]($written.Readings.split(":")[1])

 if ($RdmaWriteBytesPerSecond -gt 0)

 {

 $RdmaTrafficDetected = $true

 }

 Write-Host "VERBOSE:" $RdmaWriteBytesPerSecond "RDMA bytes written
per second"

 }

 if ($sent -ne $null)

 {

 $RdmaWriteBytesPerSecond = [uint64]($sent.Readings.split(":")[1])

 if ($RdmaWriteBytesPerSecond -gt 0)

 {

 $RdmaTrafficDetected = $true

 }

 Write-Host "VERBOSE:" $RdmaWriteBytesPerSecond "RDMA bytes sent per
second"

 }

Chapter 39 Testing RDMA Connectivity with PowerShell

224

 }

 del \\$RemoteIpAddress\C$\testfile.dat

 Write-Host "VERBOSE: Enabling RDMA on adapters that are not part of this
test. RDMA was disabled on them prior to sending RDMA traffic."

 foreach ($adapter in $adaptersToEnableRdma)

 {

 Enable-NetAdapterRdma -Name $adapter.Name

 }

 if ($RdmaTrafficDetected)

 {

 Write-Host "VERBOSE: RDMA traffic test SUCCESSFUL: RDMA traffic was sent
to" $RemoteIpAddress -ForegroundColor Green

 }

 else

 {

 Write-Host "VERBOSE: RDMA traffic test FAILED: Please check physical
switch port configuration for Priorty Flow Control." -ForegroundColor Yellow

 }

}

Chapter 40 Storage Spaces Direct Network Reporting HTML Script for Mellanox Adapters via
PowerShell

225

Chapter 40

Storage Spaces Direct
Network Reporting HTML
Script for Mellanox Adapters
via PowerShell

By: Dave Kawula – MVP

Hey Storage Spaces Direct fans, I know we have had a lot of chatter going on regarding
Mellanox’s recent bad firmware release. As I banged my head up against the wall I discovered
that Mellanox actually provides some really nice PowerShell Cmdlets with their WinOF drivers.

When looking into them I figured why not build out a nice little reporting script that would grab
the Mellanox NIC Configs from my Storage Spaces Direct Environment.

This will help me discover driver, firmware, and settings drift quite easily.

Here is a list of all the Mellanox PowerShell Commands currently available:

#Powershell SET commands Sets

Set-MlnxDriverCoreSetting

Set-MlnxPCIDevicePortTypeSetting

Set-MlnxPCIDeviceSriovSetting

Chapter 40 Storage Spaces Direct Network Reporting HTML Script for Mellanox Adapters via
PowerShell

226

#Powershell GET commands Sets

Get-MlnxDriver

Get-MlnxFirmware

Get-MlnxIBPort

Get-MlnxNetAdapter

Get-MlnxPCIDevice

Get-MlnxSoftware

#Get-MlnxDriver Command Set

Get-MlnxDriverCapabilities

Get-MlnxDriverCoreCapabilities

Get-MlnxDriverCoreSetting

Get-MlnxDriverService

Get-MlnxDriverSetting

Get-MlnxDriverCapabilities |FL

Get-MlnxDriverCoreCapabilities |FL

Get-MlnxDriverCoreSetting | FL

Get-MlnxFirmwareIdentity | FL

Get-MlnxIBPort

Get-MlnxIBPortCounters | FL

Get-MlnxNetAdapter | FL

Get-MlnxNetAdapterEcnSetting | FL

Get-MlnxNetAdapterFlowControlSetting | FL

Get-MlnxNetAdapterRoceSetting | FL

Get-MlnxNetAdapterSetting |FL

Chapter 40 Storage Spaces Direct Network Reporting HTML Script for Mellanox Adapters via
PowerShell

227

Get-MLNXPCIDevice | fl

Get-MLNXPCIDeviceCapabilities | fl

Get-MlnxPCIDevicePortTypeSetting |fl

Get-MlnxPCIDeviceSetting | fl

Get-MlnxSoftwareIdentity

What I did was take this and build them into a pretty little HTML Report for you using
PowerShell.

$Header = @"

<style>

TABLE {border-width: 1px; border-style: solid; border-color: black; border-
collapse: collapse;}

TH {border-width: 1px; padding: 3px; border-style: solid; border-color: black;
background-color: #6495ED;}

TD {border-width: 1px; padding: 3px; border-style: solid; border-color: black;}

</style>

"@

$servers = @('S2DNODE1','S2DNODE2')

$resultComputerInfo = Invoke-Command -ComputerName $servers -ScriptBlock { Get-
ComputerInfo | Select-Object -Property
CSDNSHostName,WindowsEditionId,OSServerLevel,OSUptime,OsFreePhysicalMemory,CSMod
el,CSManufacturer,CSNumberOfLogicalProcessors,CSNumberofProcessors,HyperVisorPre
sent }

$resultMLNXPCIDevice = Invoke-Command -ComputerName $servers -ScriptBlock { Get-
MLNXPCIDevice | Select-Object -Property
Systemname,Caption,Description,DeviceID,LastErrorCode,DriverVersion,FirmwareVers
ion }

Chapter 40 Storage Spaces Direct Network Reporting HTML Script for Mellanox Adapters via
PowerShell

228

$resultMlnxPCIDeviceSetting = Invoke-Command -ComputerName $servers -ScriptBlock
{ Get-MlnxPCIDeviceSetting | Select-Object -Property
Systemname,Caption,Description,InstanceID }

$resultMLNXPCIDeviceCapabilities = Invoke-Command -ComputerName $servers -
ScriptBlock { Get-MLNXPCIDeviceCapabilities | Select-Object -Property
Systemname,Caption,Description,PortOneAutoSense,PortOneDefault,PortOneAutoSenseA
llowed,PortOneEth,PorttwoIb,PortTwoAutoSenseCap,PortTwoDefault,PortTwoDoSenseAll
owed,PortTwoEth }

$resultMlnxNetAdapter = Invoke-Command -ComputerName $servers -ScriptBlock {
Get-MlnxNetAdapter | Select-Object -Property
Systemname,Caption,Description,Name,ErrorDescription,MaxSpeed,MaxTransmissionUni
t,AutoSense,FullDuplex,LinkTechnology,PortNumber,DroplessMode }

$resultMlnxNetAdapterRoceSetting = Invoke-Command -ComputerName $servers -
ScriptBlock { Get-MlnxNetAdapterRoceSetting | Select-Object -Property
Systemname,Caption,Description,InterfaceDescription,PortNumber,RoceMode,Enabled
}

$resultMlnxIBPort = Invoke-Command -ComputerName $servers -ScriptBlock { Get-
MlnxIBPort | Select-Object -Property
Systemname,Caption,Description,MaxSpeed,PortType,Speed,ActiveMaximumTransmission
Unit,PortNumberSupportedMaximumTransmissionUnit,MaxMsgSize,MaxVls,NumGids,NumPke
ys,Transport }

$resultMlnxIBPortCounters = Invoke-Command -ComputerName $servers -ScriptBlock {
Get-MlnxIBPortCounters | Select-Object -Property
Systemname,Caption,Description,StatisticTime,BytesReceived,BytesTransmitted,Pack
etsReceived,PacketsTransmitted,ExcessiveBufferOverflows,LinkDownCounter,LinterEr
rorRecoveryCounter,PortRcvErrors }

$resultMlnxFirmwareIdentity = Invoke-Command -ComputerName $servers -ScriptBlock
{ Get-MlnxFirmwareIdentity | Select-Object -Property
Caption,Description,Name,Manufacturer,VersionString }

ConvertTo-Html -Body "<H1>CheckyourLogs.Net Mellanox Storage Spaces Direct S2D
Node Configuration Report </H1><H1> S2D System Information </H3>
$($resultComputerInfo | Convertto-Html -Property * -Fragment) <H1> Mellanox
Software </H1> $($resultMLNXPCIDevice | Convertto-Html -Property * -Fragment))

Chapter 41 Using PowerShell and DSC to build out an RDSH Farm from Scratch

229

<h1>Mellanox PCI Device Settings</h1> $($resultMLNXPCIDeviceDeviceSetting |
Convertto-Html -Property * -Fragment) <H1> Mellanox Device Capabilities </H1>
$($resultMLNXPCIDeviceCapabilities | Convertto-Html -Property * -Fragment) <H1>
Mellanox NetAdapter Info </H1>$($resultMlnxNetAdapter | Convertto-Html -Property
* -Fragment) <H1> Mellanox ROCE Settings </H1>
$($resultMlnxNetAdapterRoceSetting | Convertto-Html -Property * -Fragment) <H1>
Mellanox IB Port Configuration </H1> $($resultMlnxIBPort | Convertto-Html -
Property * -Fragment) <H1> Mellanox IB Port Counters
</H1>$($resultMlnxIBPortCounters | Convertto-Html -Property * -Fragment) <H1>
Mellanox Adapter Firmware </H1> $($resultMlnxFirmwareIdentity | Convertto-Html -
Property * -Fragment)" -Title "Mellanox Adapter Configuraiton" -Head $Header
|Out-File mellanoxreport.html

In the screenshot above we can see that we have a mismatched firmware. Good thing we had
this little script to help us figure that out 😊

Dave

Chapter 41

Using PowerShell and DSC to
build out an RDSH Farm from
Scratch

By: Dave Kawula – MVP

Chapter 41 Using PowerShell and DSC to build out an RDSH Farm from Scratch

230

So, I have a new project coming up where I will be required to manage, maintain, and support an
RDS Deployment for a local engineering firm.

And after working with some of the brightest PowerShell experts in the world on the Master
PowerShell Tricks series I decided to cut ties to the GUI and build it 100 % using PowerShell.

The requirements for me to test this are actually a bit complicated because I wanted to have a
test lab to play with.

Luckily, I had already build my BigDemo PowerShell Script that included all the functions I would
need to get started. You can grab a copy for yourself at https://www.github.com/dkawula. It
was also features in Master PowerShell Tricks V2 and Master Storage Spaces Direct.

 Let’s commence the work at around 3:00 PM I started modifying the code in my existing script.

If you recall I use this same script to build out my Storage Spaces Direct Farms.

Now I have a couple of functions that I use to build the base VM’s from the Base Virtual Disks
and then do their post configurations.

function Invoke-DemoVMPrep

{

 param

 (

 [string] $VMName,

 [string] $GuestOSName,

 [switch] $FullServer

)

 Write-Log $VMName 'Removing old VM'

 get-vm $VMName -ErrorAction SilentlyContinue |

 stop-vm -TurnOff -Force -Passthru |

 remove-vm -Force

 Clear-File "$($VMPath)\$($GuestOSName).vhdx"

Chapter 41 Using PowerShell and DSC to build out an RDSH Farm from Scratch

231

 Write-Log $VMName 'Creating new differencing disk'

 if ($FullServer)

 {

 $null = New-VHD -Path "$($VMPath)\$($GuestOSName).vhdx" -ParentPath
"$($BaseVHDPath)\VMServerBase.vhdx" -Differencing

 }

 else

 {

 $null = New-VHD -Path "$($VMPath)\$($GuestOSName).vhdx" -ParentPath
"$($BaseVHDPath)\VMServerBaseCore.vhdx" -Differencing

 }

 Write-Log $VMName 'Creating virtual machine'

 new-vm -Name $VMName -MemoryStartupBytes 16GB -SwitchName $virtualSwitchName
`

 -Generation 2 -Path "$($VMPath)\" | Set-VM -ProcessorCount 2

 Set-VMFirmware -VMName $VMName -SecureBootTemplate
MicrosoftUEFICertificateAuthority

 Set-VMFirmware -Vmname $VMName -EnableSecureBoot off

 Add-VMHardDiskDrive -VMName $VMName -Path "$($VMPath)\$($GuestOSName).vhdx"
-ControllerType SCSI

 Write-Log $VMName 'Starting virtual machine'

 Enable-VMIntegrationService -Name 'Guest Service Interface' -VMName $VMName

 start-vm $VMName

}

function Create-DemoVM

{

 param

 (

Chapter 41 Using PowerShell and DSC to build out an RDSH Farm from Scratch

232

 [string] $VMName,

 [string] $GuestOSName,

 [string] $IPNumber = '0'

)

 Wait-PSDirect $VMName -cred $localCred

 Invoke-Command -VMName $VMName -Credential $localCred {

 param($IPNumber, $GuestOSName, $VMName, $domainName, $Subnet)

 if ($IPNumber -ne '0')

 {

 Write-Output -InputObject "[$($VMName)]:: Setting IP Address to
$($Subnet)$($IPNumber)"

 $null = New-NetIPAddress -IPAddress "$($Subnet)$($IPNumber)" -
InterfaceAlias 'Ethernet' -PrefixLength 24

 Write-Output -InputObject "[$($VMName)]:: Setting DNS Address"

 Get-DnsClientServerAddress | ForEach-Object -Process {

 Set-DnsClientServerAddress -InterfaceIndex $_.InterfaceIndex -
ServerAddresses "$($Subnet)1"

 }

 }

 Write-Output -InputObject "[$($VMName)]:: Renaming OS to
`"$($GuestOSName)`""

 Rename-Computer -NewName $GuestOSName

 Write-Output -InputObject "[$($VMName)]:: Configuring WSMAN Trusted
hosts"

 Set-Item -Path WSMan:\localhost\Client\TrustedHosts -Value
"*.$($domainName)" -Force

 Set-Item WSMan:\localhost\client\trustedhosts "$($Subnet)*" -Force -
concatenate

 Enable-WSManCredSSP -Role Client -DelegateComputer "*.$($domainName)" -
Force

 } -ArgumentList $IPNumber, $GuestOSName, $VMName, $domainName, $Subnet

Chapter 41 Using PowerShell and DSC to build out an RDSH Farm from Scratch

233

 Restart-DemoVM $VMName

 Wait-PSDirect $VMName -cred $localCred

}

After the Servers are build using Invoke-DemoVMPrep we use the Create-DemoVM to do their
final configs… here is what it looks like inside the script.

Now in this example I build a Domain Controller, MGMT Server, and DHCP Server, and the basic
VM’s build for the RDS Farm.

Invoke-DemoVMPrep 'DHCP1-RDS' 'DHCP1-RDS' -FullServer

Invoke-DemoVMPrep 'MGMT1-RDS' 'MGMT1-RDS' -FullServer

Invoke-DemoVMPrep 'RDSH01-RDS' 'RDSH01-RDS' -FullServer

Invoke-DemoVMPrep 'RDSH02-RDS' 'RDSH02-RDS' -FullServer

Invoke-DemoVMPrep 'RDGW01-RDS' 'RDGW01-RDS' -FullServer

Invoke-DemoVMPrep 'RDAPP01-RDS' 'RDAPP01-RDS' -FullServer

Invoke-DemoVMPrep 'DC1-RDS' 'DC1-RDS' -FullServer

$VMName = 'DC1-RDS'

$GuestOSName = 'DC1-RDS'

$IPNumber = '1'

Create-DemoVM $VMName $GuestOSName $IPNumber

Invoke-Command -VMName $VMName -Credential $localCred {

 param($VMName, $domainName, $domainAdminPassword)

 Write-Output -InputObject "[$($VMName)]:: Installing AD"

 $null = Install-WindowsFeature AD-Domain-Services -IncludeManagementTools

Chapter 41 Using PowerShell and DSC to build out an RDSH Farm from Scratch

234

 Write-Output -InputObject "[$($VMName)]:: Enabling Active Directory and
promoting to domain controller"

 Install-ADDSForest -DomainName $domainName -InstallDNS -NoDNSonNetwork -
NoRebootOnCompletion `

 -SafeModeAdministratorPassword (ConvertTo-SecureString -String
$domainAdminPassword -AsPlainText -Force) -confirm:$false

} -ArgumentList $VMName, $domainName, $domainAdminPassword

Restart-DemoVM $VMName

$VMName = 'DHCP1-RDS'

$GuestOSName = 'DHCP1-RDS'

$IPNumber = '3'

Create-DemoVM $VMName $GuestOSName $IPNumber

Invoke-Command -VMName $VMName -Credential $localCred {

 param($VMName, $domainCred, $domainName)

 Write-Output -InputObject "[$($VMName)]:: Installing DHCP"

 $null = Install-WindowsFeature DHCP -IncludeManagementTools

 Write-Output -InputObject "[$($VMName)]:: Joining domain as
`"$($env:computername)`""

 while (!(Test-Connection -ComputerName $domainName -BufferSize 16 -Count 1 -
Quiet -ea SilentlyContinue))

 {

 Start-Sleep -Seconds 1

 }

 do

 {

 Add-Computer -DomainName $domainName -Credential $domainCred -ea
SilentlyContinue

 }

Chapter 41 Using PowerShell and DSC to build out an RDSH Farm from Scratch

235

 until ($?)

} -ArgumentList $VMName, $domainCred, $domainName

Restart-DemoVM $VMName

Wait-PSDirect $VMName -cred $domainCred

Invoke-Command -VMName $VMName -Credential $domainCred {

 param($VMName, $domainName, $Subnet, $IPNumber)

 Write-Output -InputObject "[$($VMName)]:: Waiting for name resolution"

 while ((Test-NetConnection -ComputerName $domainName).PingSucceeded -eq
$false)

 {

 Start-Sleep -Seconds 1

 }

 Write-Output -InputObject "[$($VMName)]:: Configuring DHCP Server"

 Set-DhcpServerv4Binding -BindingState $true -InterfaceAlias Ethernet

 Add-DhcpServerv4Scope -Name 'IPv4 Network' -StartRange "$($Subnet)10" -
EndRange "$($Subnet)200" -SubnetMask 255.255.255.0

 Set-DhcpServerv4OptionValue -OptionId 6 -value "$($Subnet)1"

 Add-DhcpServerInDC -DnsName "$($env:computername).$($domainName)"

 foreach($i in 1..99)

 {

 $mac = '00-b5-5d-fe-f6-' + ($i % 100).ToString('00')

 $ip = $Subnet + '1' + ($i % 100).ToString('00')

 $desc = 'Container ' + $i.ToString()

 $scopeID = $Subnet + '0'

 Add-DhcpServerv4Reservation -IPAddress $ip -ClientId $mac -Description
$desc -ScopeId $scopeID

 }

Chapter 41 Using PowerShell and DSC to build out an RDSH Farm from Scratch

236

} -ArgumentList $VMName, $domainName, $Subnet, $IPNumber

Restart-DemoVM $VMName

Now that I had my configurations started I finished up by running Create-DemoVM on the RDS
Farm instances which basically just joined them to the domain and restarted them.

$VMName = 'MGMT1-RDS'

$GuestOSName = 'MGMT1-RDS'

Create-DemoVM $VMName $GuestOSName

Invoke-Command -VMName $VMName -Credential $localCred {

 param($VMName, $domainCred, $domainName)

 Write-Output -InputObject "[$($VMName)]:: Management tools"

 $null = Install-WindowsFeature RSAT-Clustering, RSAT-Hyper-V-Tools

 Write-Output -InputObject "[$($VMName)]:: Joining domain as
`"$($env:computername)`""

 while (!(Test-Connection -ComputerName $domainName -BufferSize 16 -Count 1 -
Quiet -ea SilentlyContinue))

 {

 Start-Sleep -Seconds 1

 }

 do

 {

 Add-Computer -DomainName $domainName -Credential $domainCred -ea
SilentlyContinue

 }

 until ($?)

} -ArgumentList $VMName, $domainCred, $domainName

Chapter 41 Using PowerShell and DSC to build out an RDSH Farm from Scratch

237

Restart-DemoVM $VMName

$VMName = 'RDSH01-RDS'

$GuestOSName = 'RDSH01-RDS'

Create-DemoVM $VMName $GuestOSName

Invoke-Command -VMName $VMName -Credential $localCred {

 param($VMName, $domainCred, $domainName)

 Write-Output -InputObject "[$($VMName)]:: Management tools"

 # $null = Install-WindowsFeature RSAT-Clustering, RSAT-Hyper-V-Tools

 Write-Output -InputObject "[$($VMName)]:: Joining domain as
`"$($env:computername)`""

 while (!(Test-Connection -ComputerName $domainName -BufferSize 16 -Count 1 -
Quiet -ea SilentlyContinue))

 {

 Start-Sleep -Seconds 1

 }

 do

 {

 Add-Computer -DomainName $domainName -Credential $domainCred -ea
SilentlyContinue

 }

 until ($?)

} -ArgumentList $VMName, $domainCred, $domainName

Restart-DemoVM $VMName

$VMName = 'RDSH02-RDS'

$GuestOSName = 'RDSH02-RDS'

Chapter 41 Using PowerShell and DSC to build out an RDSH Farm from Scratch

238

Create-DemoVM $VMName $GuestOSName

Invoke-Command -VMName $VMName -Credential $localCred {

 param($VMName, $domainCred, $domainName)

 Write-Output -InputObject "[$($VMName)]:: Management tools"

 #$null = Install-WindowsFeature RSAT-Clustering, RSAT-Hyper-V-Tools

 Write-Output -InputObject "[$($VMName)]:: Joining domain as
`"$($env:computername)`""

 while (!(Test-Connection -ComputerName $domainName -BufferSize 16 -Count 1 -
Quiet -ea SilentlyContinue))

 {

 Start-Sleep -Seconds 1

 }

 do

 {

 Add-Computer -DomainName $domainName -Credential $domainCred -ea
SilentlyContinue

 }

 until ($?)

} -ArgumentList $VMName, $domainCred, $domainName

Restart-DemoVM $VMName

$VMName = 'RDGW01-RDS'

$GuestOSName = 'RDGW01-RDS'

Create-DemoVM $VMName $GuestOSName

Invoke-Command -VMName $VMName -Credential $localCred {

 param($VMName, $domainCred, $domainName)

 Write-Output -InputObject "[$($VMName)]:: Management tools"

Chapter 41 Using PowerShell and DSC to build out an RDSH Farm from Scratch

239

 #$null = Install-WindowsFeature RSAT-Clustering, RSAT-Hyper-V-Tools

 Write-Output -InputObject "[$($VMName)]:: Joining domain as
`"$($env:computername)`""

 while (!(Test-Connection -ComputerName $domainName -BufferSize 16 -Count 1 -
Quiet -ea SilentlyContinue))

 {

 Start-Sleep -Seconds 1

 }

 do

 {

 Add-Computer -DomainName $domainName -Credential $domainCred -ea
SilentlyContinue

 }

 until ($?)

} -ArgumentList $VMName, $domainCred, $domainName

Restart-DemoVM $VMName

$VMName = 'RDAPP01-RDS'

$GuestOSName = 'RDAPP01-RDS'

Create-DemoVM $VMName $GuestOSName

Invoke-Command -VMName $VMName -Credential $localCred {

 param($VMName, $domainCred, $domainName)

 Write-Output -InputObject "[$($VMName)]:: Management tools"

 $null = Install-WindowsFeature RSAT-Clustering, RSAT-Hyper-V-Tools

 Write-Output -InputObject "[$($VMName)]:: Joining domain as
`"$($env:computername)`""

 while (!(Test-Connection -ComputerName $domainName -BufferSize 16 -Count 1 -
Quiet -ea SilentlyContinue))

 {

 Start-Sleep -Seconds 1

Chapter 41 Using PowerShell and DSC to build out an RDSH Farm from Scratch

240

 }

 do

 {

 Add-Computer -DomainName $domainName -Credential $domainCred -ea
SilentlyContinue

 }

 until ($?)

} -ArgumentList $VMName, $domainCred, $domainName

Restart-DemoVM $VMName

The coolest part about all of this is that I am running all of this infrastructure on my 2-node
Storage Spaces Direct All Flash Array and it only took 20 minutes to build this start to finish.

Here is the Script building finished product looked like this: This final run was done at around
4:14 PM

Chapter 41 Using PowerShell and DSC to build out an RDSH Farm from Scratch

241

Here are the VM’s Built in Hyper-V

Now the coolest part of what I wanted to do was to automate the build of the RDS Farm with
PowerShell DSC.

To accomplish this I used a PSGallery Item called xRemoteDesktopSessionHost v.1.4.0.0 which
can be found here:

https://www.powershellgallery.com/packages/xRemoteDesktopSessionHost/1.4.0.0

Now with the help of Will Anderson one of the amazing Honorary Scripting Guys at Microsoft I
was able to install this DSCResource without having to do much other than execute this one line
of PowerShell on my

target machine:

Find-Module xRemoteDesktopSessionHost | Install-Module

Chapter 41 Using PowerShell and DSC to build out an RDSH Farm from Scratch

242

Once done I had the PowerShell DSC module that would be required for me to proceed.

For tonight’s testing, I decided to do a single server configuration to see how hard it would be.

Here is the DSC Configuration I used to build out my base configuration for testing:

param (

[string]$brokerFQDN,

[string]$webFQDN,

[string]$collectionName,

[string]$collectionDescription

)

$localhost = [System.Net.Dns]::GetHostByName((hostname)).HostName

if (!$collectionName) {$collectionName = "DK Collection"}

if (!$collectionDescription) {$collectionDescription = "Remote Desktop instance
for accessing an isolated network environment."}

Configuration RemoteDesktopSessionHost

{

 param

 (

 # Connection Broker Name

 [Parameter(Mandatory)]

 [String]$collectionName,

 # Connection Broker Description

Chapter 41 Using PowerShell and DSC to build out an RDSH Farm from Scratch

243

 [Parameter(Mandatory)]

 [String]$collectionDescription,

 # Connection Broker Node Name

 [String]$connectionBroker,

 # Web Access Node Name

 [String]$webAccessServer

)

 Import-DscResource -Module xRemoteDesktopSessionHost

 if (!$connectionBroker) {$connectionBroker = $localhost}

 if (!$connectionWebAccessServer) {$webAccessServer = $localhost}

 Node "localhost"

 {

 LocalConfigurationManager

 {

 RebootNodeIfNeeded = $true

 }

 WindowsFeature Remote-Desktop-Services

 {

 Ensure = "Present"

 Name = "Remote-Desktop-Services"

 }

 WindowsFeature RDS-RD-Server

 {

 Ensure = "Present"

Chapter 41 Using PowerShell and DSC to build out an RDSH Farm from Scratch

244

 Name = "RDS-RD-Server"

 }

 WindowsFeature Desktop-Experience

 {

 Ensure = "Present"

 Name = "Desktop-Experience"

 }

 WindowsFeature RSAT-RDS-Tools

 {

 Ensure = "Present"

 Name = "RSAT-RDS-Tools"

 IncludeAllSubFeature = $true

 }

 if ($localhost -eq $connectionBroker) {

 WindowsFeature RDS-Connection-Broker

 {

 Ensure = "Present"

 Name = "RDS-Connection-Broker"

 }

 }

 if ($localhost -eq $webAccessServer) {

 WindowsFeature RDS-Web-Access

 {

 Ensure = "Present"

 Name = "RDS-Web-Access"

 }

Chapter 41 Using PowerShell and DSC to build out an RDSH Farm from Scratch

245

 }

 WindowsFeature RDS-Licensing

 {

 Ensure = "Present"

 Name = "RDS-Licensing"

 }

 xRDSessionDeployment Deployment

 {

 SessionHost = $localhost

 ConnectionBroker = if ($ConnectionBroker) {$ConnectionBroker} else
{$localhost}

 WebAccessServer = if ($WebAccessServer) {$WebAccessServer} else
{$localhost}

 DependsOn = "[WindowsFeature]Remote-Desktop-Services",
"[WindowsFeature]RDS-RD-Server"

 }

 xRDSessionCollection Collection

 {

 CollectionName = $collectionName

 CollectionDescription = $collectionDescription

 SessionHost = $localhost

 ConnectionBroker = if ($ConnectionBroker) {$ConnectionBroker} else
{$localhost}

 DependsOn = "[xRDSessionDeployment]Deployment"

 }

 xRDSessionCollectionConfiguration CollectionConfiguration

 {

 CollectionName = $collectionName

 CollectionDescription = $collectionDescription

Chapter 41 Using PowerShell and DSC to build out an RDSH Farm from Scratch

246

 ConnectionBroker = if ($ConnectionBroker) {$ConnectionBroker} else
{$localhost}

 TemporaryFoldersDeletedOnExit = $false

 SecurityLayer = "SSL"

 DependsOn = "[xRDSessionCollection]Collection"

 }

 xRDRemoteApp Calc

 {

 CollectionName = $collectionName

 DisplayName = "Calculator"

 FilePath = "C:\Windows\System32\calc.exe"

 Alias = "calc"

 DependsOn = "[xRDSessionCollection]Collection"

 }

 xRDRemoteApp Mstsc

 {

 CollectionName = $collectionName

 DisplayName = "Remote Desktop"

 FilePath = "C:\Windows\System32\mstsc.exe"

 Alias = "mstsc"

 DependsOn = "[xRDSessionCollection]Collection"

 }

 xRDRemoteApp WordPad

 {

 CollectionName = $collectionName

 DisplayName = "WordPad"

 FilePath = "C:\Program Files\Windows NT\Accessories\wordpad.exe"

 Alias = "wordpad"

 DependsOn = "[xRDSessionCollection]Collection"

 }

Chapter 41 Using PowerShell and DSC to build out an RDSH Farm from Scratch

247

 xRDRemoteApp CMD

 {

 CollectionName = $collectionName

 DisplayName = "CMD"

 FilePath = "C:\windows\system32\cmd.exe"

 Alias = "cmd"

 DependsOn = "[xRDSessionCollection]Collection"

 }

 }

}

write-verbose "Creating configuration with parameter values:"

write-verbose "Collection Name: $collectionName"

write-verbose "Collection Description: $collectionDescription"

write-verbose "Connection Broker: $brokerFQDN"

write-verbose "Web Access Server: $webFQDN"

RemoteDesktopSessionHost -collectionName $collectionName -collectionDescription
$collectionDescription -connectionBroker $brokerFQDN -webAccessServer $webFQDN -
OutputPath .\RDSDSC\

Set-DscLocalConfigurationManager -verbose -path .\RDSDSC\

Start-DscConfiguration -wait -force -verbose -path .\RDSDSC\

Here was a snip of the script in action building the single node RDS Test Server:

Chapter 41 Using PowerShell and DSC to build out an RDSH Farm from Scratch

248

Here was a screenshot of the completely installed farm.

Here is a Screenshot of the view from the client’s perspective

Chapter 41 Using PowerShell and DSC to build out an RDSH Farm from Scratch

249

I did do some testing by removing some of the applications and then re-running the DSC
Configuration and as expected the just got re-published.

From myself and all the authors that are part of this series we want to thank you for taking the
time for reading it. All of us are looking forward to seeing you in Master PowerShell Tricks V4.

Thanks from ,

The MVP Days Publishing Authors, Editors, and Volunteers.

Chapter 42 Join us at MVPDays and meet great MVP’s like this in person

250

Chapter 42

Join us at MVPDays and meet
great MVP’s like this in
person

If you liked their book, you will love to hear them in person.

Live Presentations
Dave frequently speaks at Microsoft conferences around North America, such as TechEd,
VeeamOn, TechDays, and MVPDays Community Roadshow.

Cristal runs the MVPDays Community Roadshow.

You can find additional information on the following blog:

www.checkyourlogs.net

www.mvpdays.com

Video Training
For video-based training, see the following site:

www.mvpdays.com

Chapter 42 Join us at MVPDays and meet great MVP’s like this in person

251

Live Instructor-led Classes
Dave has been a Microsoft Certified Trainer (MCT) for more than 15 years and presents
scheduled instructor-led classes in the US and Canada. For current dates and locations, see the
following sites:

 www.truesec.com

 www.checkyourlogs.net

Consulting Services
Dave and Cristal have worked with some of the largest companies in the world and have a
wealth of experience and expertise. Customer engagements are typically between two weeks
and six months.

Chapter 42 Join us at MVPDays and meet great MVP’s like this in person

252

Twitter
Dave, Cristal, Émile, Thomas, Allan, Sean, Mick, and Ed on Twitter tweet on the following aliases:

 Dave Kawula: @DaveKawula

 Cristal Kawula: @SuperCristal1

 Émile Cabot: @Ecabot

 Thomas Rayner: @MrThomasRayner

 Allan Rafuse: @AllanRafuse

 Mick Pletcher: @Mick_Pletcher

 Will Anderson: @GamerLivingWill

 Cary Sun: @SifuSun

