

PowerShell by Mistake

Don Jones

This book is for sale at http://leanpub.com/powershell-by-mistake

This version was published on 2018-12-18

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2018 Don Jones

http://leanpub.com/powershell-by-mistake
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Don Jones by spreading the word about this book on
Twitter!

The suggested tweet for this book is:

I’m learning #PowerShell by reviewing mistakes - you can too!

The suggested hashtag for this book is #PowerShellByMistake.

Find out what other people are saying about the book by clicking
on this link to search for this hashtag on Twitter:

#PowerShellByMistake

http://twitter.com
https://twitter.com/intent/tweet?text=I'm%20learning%20%23PowerShell%20by%20reviewing%20mistakes%20-%20you%20can%20too!
https://twitter.com/search?q=%23PowerShellByMistake
https://twitter.com/search?q=%23PowerShellByMistake

Also By Don Jones
The DSC Book

The PowerShell Scripting and Toolmaking Book

Become Hardcore Extreme Black Belt PowerShell Ninja Rockstar

Be the Master

Don Jones’ PowerShell 4N00bs

Don Jones’ The Cloud 4N00bs

Instructional Design for Mortals

How to Find a Wolf in Siberia

Tales of the Icelandic Troll

The Culture of Learning

http://leanpub.com/u/donjones
http://leanpub.com/the-dsc-book
http://leanpub.com/powershell-scripting-toolmaking
http://leanpub.com/become-powershell
http://leanpub.com/bethemaster
http://leanpub.com/powershell-4n00bs
http://leanpub.com/cloud-4n00bs
http://leanpub.com/id-for-mortals
http://leanpub.com/troubleshooting
http://leanpub.com/icelandic-troll
http://leanpub.com/culture-of-learning

Contents

About This Book . 1

Introduction . 2

How to Use This Book . 4

A Note on Code Samples . 5

Contacting Me . 6

Problem 1: On Apples and Apples 7
Spoiler!! . 8

Problem 2: On Alternate Credentials 12
Spoiler!! . 13

Problem 3: On Strings ByValue 15
Spoiler!! . 16

Problem 4: On Magic Quote Timing 19
Spoiler!! . 20

Problem 5: On Patterns and Suppression 22
Spoiler!! . 23

Problem 6: On Formatting Numbers in Strings 26
Spoiler!! . 27

CONTENTS

Problem 7: On Parsing Strings 29
Spoiler!! . 29

Problem 8: Mix ‘n’ Match . 33
Spoiler!! . 33

Problem 9: The Return ofâ€¦ 35
Spolier!! . 35

Problem 10: True Equality 38
Spoiler!! . 38

Problem 11: Argumentative 40
Spoiler! . 40

Problem 12: Assignment and Output 42
Spoiler! . 42

Problem 13: Tricky Parameter Sets 45
Spoiler!! . 47

Problem 14: The Business Case 50
Spoiler!! . 50

Problem 15: Not Your Father’s Programming Language . 52
Spoiler!! . 52

Problem 16: Shall I Compare Theeâ€¦ 55
Spoiler!! . 55

Problem 17: Debug Me . 57
Spoiler!! . 57

Problem 18: Literally the Registry 59
Spoiler!! . 60

About This Book
This is a continually-published book, “sold” only via Leanpub¹.
You’ll have access to new chapters each time they’re published,
whenever that happens in the future. It’s recommended that you
permit Leanpub to notify you, via e-mail, when new chapters are
posted. That way, you’ll know it’s time to come get the latest. If you
don’t explicitly opt into those notifications, be sure to check back
at least monthly for new content.

There’s no change-log for this book; each new “build” published on
Leanpub will contain a new chapter.

This is an open-source book². That means you have the ability to
pay $0 for it, and anything you do choose to pay will be donated to
The DevOps Collective’s scholarship and other nonprofit programs.

¹http://leanpub.com/powershell-by-mistake
²http://github.com/concentrateddon/powershell-by-mistake/

http://leanpub.com/powershell-by-mistake
http://github.com/concentrateddon/powershell-by-mistake/
http://leanpub.com/powershell-by-mistake
http://github.com/concentrateddon/powershell-by-mistake/

Introduction
Human brains are funny things. At the end of the day, our brains are
still wired the same way they were when we were cavemen trying
to survive in the wild. Anything relevant to our immediate survival
tended to “stick” in our brains, and anything not relevant tends to
slip past. Tell a child, “don’t touch that hot pot on the stove!” all
you want to, they’re still likely to touch it - once.

This book is the hot pot on the stove.

In this book, I’ve collected edited versions of posts from the Pow-
erShell.org Q&A forums and other online forums. I’ve anonymized
these, although nothing in this book should ever be construed as
criticism of the original posters. We all make mistakes, and thanks
to the way our brains work, making mistakes and solving them is
the best way for us to learn. So in each chapter, I’ll present a new
problem from the forums, and I’d like you to take the time to try
and figure it out for yourself. I’ll also present a solution, along with
explanations.

This book is not a how-to, and I presume that you already have
a decent amount of basic PowerShell education under your belt.
This book is not about how to make Active Directory work, or
Exchange Server, or SharePoint Server, or anything else; this is
about PowerShell. So you’re going to see problems that relate to
the core of how PowerShell works. Many of these problems spring
from “gotchas” in PowerShell, while others have their origin in very
common misunderstandings about how the shell works. If you’re
looking for a structured learning approach to PowerShell, I offer
recommendations on my website³.

If you feel that you learn best by getting your hands dirty, making

³http://donjones.com/powershell

http://donjones.com/powershell
http://donjones.com/powershell

Introduction 3

mistakes, and figuring them out, then this book is for you.

How to Use This Book
Read each chapter. Pore over the code (if you prefer to look at
the code in an editor, which I recommend, you’ll find the code
downloadable from GitHub⁴, with each chapter’s code samples in
their own folder). Read it all thoroughly. Try to figure out what’s
wrong. That’s really the point of this book: taking the time to
understand the code, and to see if you can figure out the “fix.”

Each chapter ends in a “Spoiler!!” section, which contains a possible
solution. Use this to check yourself, but know that most problems
can be solved in a number of ways, so if you came up with
something different, you’re not necessarily wrong.

It is hugely important that you make the effort to understand the
problem code and solve it before looking at the solution. This is a
fundamental part of how human brains work! If you just skip ahead
and read the solution, you won’t actually learn anything. You’d be
cheating yourself, and you shouldn’t do that. Treat each chapter as
a puzzle, and make the effort to try and solve each one.

⁴http://github.com/concentrateddon/powershell-by-mistake-code

http://github.com/concentrateddon/powershell-by-mistake-code
http://github.com/concentrateddon/powershell-by-mistake-code

A Note on Code Samples
Printing code in a book is a huge pain in the neck. E-readers format
it however they darn well please, giving authors no control. PDF is
okay, but consider this:

1 Import-CSV users.csv | Select @{n='samAccountName';e={$_.\

2 name}},Name,Department,City,Title | New-ADUser -PassThru \

3 | Export-CSV output.csv

That backslash you see at the end of the first line isn’t a typo, it’s
the code-formatter’s way of saying, “this didn’t all fit on one line,
so I’m wrapping it to the next line, but you shouldn’t do that if
you’re typing this in yourself.” I can’t fix that because there’s no
other reasonable thing to do.

Backslashes cause another problem, as in C:Program FilesWin-
dowsPowerShell:

1 C:\Program Files\WindowsPowerShell

See, in a lot of instances the backslashes get removed, because
Markdown considers them to be escape characters. If you notice
this happening, consider visiting this book’s GitHub repo and
submitting a change ;).

As you can see, reading code in a book can be a pain. Instead, I
recommend grabbing the code downloads fromGitHub⁵ so you can
see the code in its “unadulterated” form. Or, just learn to deal with
the foibles of printed code listings!

⁵http://github.com/concentrateddon/powershell-by-mistake-code

http://github.com/concentrateddon/powershell-by-mistake-code
http://github.com/concentrateddon/powershell-by-mistake-code

Contacting Me
I cannot help with technical Q&A via email, so please don’t use
the “Email the Author” form on this book’s Leanpub page for
that, and please don’t tweet questions to me @concentratedDon.
I do love hearing from people via those channels, but they’re not
suitable for technical Q&A. Instead, please use the Q&A forums on
PowerShell.org⁶ for technical Q&A.

That said, if you found a typo or something, please consider logging
an issue on this book’s GitHub repo⁷. I do appreciate it, and I’ll
make corrections for the next build of the book. And know what I
appreciate even more? Just fork the repo, make the fix yourself, and
submit a Pull Request! As a “continually published, Agile book,”
there’s not really an opportunity for an editor to step in and fix
those things ahead of time (and financially, this book wouldn’t be
worth doing if an editor needed to be paid), so it’s really awesome
of you to let me know if you find things. I also appreciate your
patience with my typos!

⁶http://powershell.org/forums
⁷http://github.com/concentrateddon/powershell-by-mistake/

http://powershell.org/forums
http://github.com/concentrateddon/powershell-by-mistake/
http://powershell.org/forums
http://github.com/concentrateddon/powershell-by-mistake/

Problem 1: On Apples
and Apples

Consider the following code:

1 $jsonFiles = Get-ChildItem -path "c:\tmp\json" -filter *.\

2 json |

3 get-content -raw

4 $allobjects = $jsonFiles | convertfrom-json

5

6 $alreadyCreatedGroup = Get-UnifiedGroup | select alias

7

8 function checkForExistingGroup {

9 [CmdletBinding()]

10 Param(

11 [Parameter(Position=0, Mandatory=$true, ValueFrom\

12 Pipeline=$true)]

13 $InputObject

14)

15

16 Process {

17 if("gr-$($InputObject.alias)" -in $alreadyCre\

18 atedGroup){

19 echo "$($inputobject.alias) exists"

20 }

21 else{

22 echo "$($InputObject.alias) does \

23 not exist"

24 }

25 }

26 }

Problem 1: On Apples and Apples 8

27

28 $allobjects | checkForExistingGroup

Basically, this code is grabbing some group aliases in $alreadyCreatedGroup.
It’s then grabbing a bunch of objects which have an Alias prop-
erty, piping them to a function, and then checking to see which
of those already exist in $alreadyCreatedGroup. A trick is that
the piped-in objects have a “gr-“ prefix, whereas the items in
$alreadyCreatedGroup do not. As written, this will not work. Can
you see why?

Spoiler!!

There are a few problems with the script, and I’ll start with the
non-substantive ones.

First, the function is using a name that doesn’t meet PowerShell
naming conventions.

Second, the function is using echo, which is an alias to Write-Host;
it really should be outputting this “test output” using Write-Verbose,
which can be disabled when it’s no longer needed, and re-enabled
when it is, simply by running (or not running) the function using
-Verbose.

Substantively, the function itself is using $alreadyCreatedGroup,
which exists outside the scope of the function. This is a very
bad coding practice, and can create a variety of difficult-to-debug
situations. Except in extremely rare situations, functions should
accept input only via parameters.

Finally, all those issues aside, the main problem is here:

1 $alreadyCreatedGroup = Get-UnifiedGroup | select alias

This creates a collection of objects which have an Alias property.
Compare that to this:

Problem 1: On Apples and Apples 9

1 $inputobject.alias

Presuming the piped-in objects have an Alias property also, this
code will return a simple string. So when the comparison is run:

1 ("gr-$($InputObject.alias)" -in $alreadyCreatedGroup)

We’re checking to see if a simple string, prefixed with “gr-“, exists
within a collection of objects. PowerShell doesn’t “know” that it’s
supposed to be comparing the prefixed string to the Alias property
of the objects in $alreadyCreatedGroup. Instead, PowerShell is
going to “think” of this like, “okay, is the string ‘gr-something’
the same as this complex object that potentially has multiple
properties?” It’s not like comparing apples to oranges, it’s like
comparing apples to an entire produce section at the grocery store.

This is a very common “gotcha” in PowerShell. Whenever you’re
comparing things, you have to make absolutely certain you’re
comparing the same kinds of things. Here, we’ve got a simple string
coming from $InputObject.alias. The fact that $alreadyCreatedGroup
only possess a property named Alias may be meaningful to hu-
mans, but PowerShell can’t make the “mental leap” and think,
“OOOOOH, I’m supposed to compare the string to the contents of
the only property that happens to exist, here.” So the comparison
fails.

Revised:

Problem 1: On Apples and Apples 10

1 $alreadyCreatedGroup = Get-UnifiedGroup | select -Expand \

2 alias

3

4 function Test-ForExistingGroup {

5 [CmdletBinding()]

6 Param(

7 [Parameter(Position=0, Mandatory=$true, ValueFrom\

8 Pipeline=$true)]

9 $InputObject,

10

11 [Parameter(Position=0, Mandatory=$true)]

12 $ExistingGroups

13)

14

15 Process {

16 if("gr-$($InputObject.alias)" -in $ExistingGr\

17 oups) {

18 Write-Verbose "$($inputobject.alias) exis\

19 ts"

20 } else{

21 Write-Verbose "$($InputObject.alias) does\

22 not exist"

23 }

24 }

25 }

26

27 $allobjects | Test-ForExistingGroup -Verbose -Existing $a\

28 lreadyCreatedGroup

1. I’ve renamed the function to conform to PowerShell patterns.
2. I’ve fixed some of the bracket indentation and alignment. This

is a pet peeve.
3. I’ve added a parameter so that the $alreadyCreatedGroup can

be passed into the function properly. The function no longer
needs to rely on external data.

Problem 1: On Apples and Apples 11

4. I’ve modified the echo commands to use Write-Verbose in-
stead. Note that I add -Verbose when running the function,
at the end.

5. Importantly, I’m extracting the contents of the Alias property
for $alreadyCreatedGroup, so that I’m passing the function a
list of strings to compare to other stringsâ€”apples to apples.
That was done here:

1 $alreadyCreatedGroup = Get-UnifiedGroup | select -Expand \

2 alias

The -ExpandProperty parameter of Select-Object extracts the
string from the Alias property, leaving an array of strings rather
than a collection of objects.

Problem 2: On Alternate
Credentials

Here’s some code:

1 $Password = ConvertTo-SecureString "abcd" -AsPlainText -F\

2 orce

3 $Credentials = New-Object System.Management.Automation.PS\

4 Credential ("domainname\aduser", $Password)

5 $sql1 = New-PSSession -ComputerName sql1 -Credential $Cre\

6 dentials

7 Import-PSSession -Session sql1 -Module SQLPS -Prefix sql1\

8 -AllowClobber

As you can see, the intent is to create a Remoting session to
a computer (which appears to be running SQL Server), and use
implicit remoting to import the SQLPS module from the server.
The trick is, we’re assuming that the user running this doesn’t have
permission to connect to the remote machine.

Specifically, the business requirement is:

Domain users will be running the script but they don’t
have access to the server itself so the New-PSSession
cmdlet blows up with ‘access denied’.

To confirm that Remoting was indeed working, the above code was
run. Obviously the code works, but it’s a bad idea. So what do you
think of this, and how would you fix it?

Problem 2: On Alternate Credentials 13

Spoiler!!

Hardcoding credentials is always a bad idea. Always. And to be
fair, the individual who originally posted this acknowledged very
clearly that they knew it was a bad idea. They just didn’t know a
better way.

Did you?

The answer is Just Enough Administration, or JEA. It’s really just
a set of commands (available in PowerShell Gallery, by the by)
that help define and create constrained endpoints in PowerShell
Remoting. JEA is a big deal: it’s a huge part of Azure Stack, for
example, and it’s a robust-production ready tool that solves a
specific problem, which is how to let users safely run commands
that they don’t normally have permission to run.

When you set up Remoting on a computer, you’re creating up to
four endpoints. Nobody notices this, because normally when we
use Remoting we’re accessing the main default endpoint, which is
named “Microsoft.PowerShell.” But look at the help for commands
like Invoke-Command and Enter-PSSession and you’ll see that you
can indeed specify the name of any endpoint you want. The
default endpoint only allows Admins in (and members of a special
Remote Admins group), and once you’re in, you can run whatever
commands you want. The default endpoint doesn’t have a “run
as” account assigned, so it just runs commands by using your
credentials.

But that’s just the default behavior.

When you create a custom endpoint, which is what JEA does, you
can specify:

• Who is allowed to access it
• What commands they are allowed to run
• A “run as” account, which is stored on the server and used to
execute everything run inside the endpoint

Problem 2: On Alternate Credentials 14

The “what commands they are allowed to run” is a huge deal.
You can pre-import whatever modules you want, and provide a
“whitelist” of permitted commands. Only those commands will be
visible, and they’ll run as the “run as” account. You can even create
proxy functions, which basically take an existing command and do
stuff like remove parameters, add parameters, and so on. You could,
for example, hardcode certain parameter values of a command
rather than exposing them inside the endpoint. This restricts what
someone can do with the command. It’s exactly how Office 365’s
Remoting works, so that Microsoft can prevent you from accessing
bits of Exchange (for example) that belong to another customer.

Constrained endpointsâ€”and JEA, which makes them easier to
manageâ€”are amassively useful and important PowerShell feature
that’s existed since v2. It’s a shame so few people know about it, and
what it can do.

Problem 3: On Strings
ByValue

As a note, the code for this one is pretty concise and illustrative, so
there’s no downloadable code version in the GitHub repo.

Consider this:

1 PS C:\> $MAC="08-00-27-35-AE-2C"

2 PS C:\> $MAC.replace('-','%')

3 08%00%27%35%AE%2C

Clear enough, right? The “-“ characters are replaced with “%.”
But continuing in the same shell session, why does the following
happen?

1 PS C:\> $MAC.replace('%',':')

2 08-00-27-35-AE-2C

That’s your first problem. Second, consider this:

1 PS C:\> $MAC = Get-WMIObject win32_networkadapterconfigur\

2 ation | foreach { $_.MacAddress }

3 PS C:\> $MAC

4 08:00:27:35:AE:2C

5 PS C:\> $MAC.replace(':','-')

6 You cannot call a method on a null-valued expression.

7 At line:1 char:1

8 + $MY_MAC.replace(':','-')

We’ve clearly gotten a MAC address in $MAC, so why the error
message?

Problem 3: On Strings ByValue 16

Spoiler!!

Let’s cover the first one first.

1 PS C:\> $MAC="08-00-27-35-AE-2C"

2 PS C:\> $MAC.replace('-','%')

3 08%00%27%35%AE%2C

4 PS C:\> $MAC.replace('%',':')

5 08-00-27-35-AE-2C

In .NET Framework, and therefore PowerShell (and in most lan-
guages, for that matter), variables refer to things by value as
opposed to by reference. That means when you run a method like
Replace(), you aren’t modifying the contents of the original vari-
able. Instead, you produce a new value, and the variable continues
to contain its old value. In the above example, we didn’t capture the
new value into a variable, so it displayed at the console and then
basically vanished into the ether.

By reference works a bit differently, and it’s a bit unusual to see it
used in a situation like the above (PowerShell doesn’t do “ByRef”
very easily, either). In a “ByRef” system, using a variable actually
just points to the location in memory where the variable “lives,”
so any actions taken “against” the variable actually do modify
its contents. I’m mentioning this because it is a legit thing in
computers, but it’s unusual in PowerShell.

Next problem:

Problem 3: On Strings ByValue 17

1 PS C:\> $MAC = Get-WMIObject win32_networkadapterconfigur\

2 ation | foreach { $_.MacAddress }

3 PS C:\> $MAC

4 08:00:27:35:AE:2C

5 PS C:\> $MAC.replace(':','-')

6 You cannot call a method on a null-valued expression.

7 At line:1 char:1

8 + $MY_MAC.replace(':','-')

This one’s actually really subtle, and it illustrates how PowerShell
can mess with your head without you realizing it. In this case,
the Get-WmiObject call function as you might think, and the return
objects do in fact have a MacAddress property. And that MacAddress
property does return a string value, which does have a Replace()

method. So what’s happening?

It turns out that the MacAddress property is actually an array, not
a single value. When we just ran $MAC, PowerShell said, “well, I
suppose I could just display the fact that this is an array, but I bet
what this person wants is to see all the items in the array. So I’ll
just display them all. Oh, there’s only one.”

You see, an array of one object is still an array, and the array itself
does not have a Replace() method. If we’d have done this:

1 PS C:\> $MAC[0].replace(':','-')

It would have worked, because now we’re referring to a specific
object within the array, which is a string, which does have a
Replace() method.

PowerShell can actually be a little irritating about arrays in sce-
narios like this, because in some cases and in some later versions
of PowerShell, it’ll secretly enumerate each item in the collection.
Basically, it’ll do this under the hood:

Problem 3: On Strings ByValue 18

1 ForEach ($item in $MAC) {

2 $item.Replace(':','-')

3 }

But it can’t do that little trick every time (or in older versions),
and so youmight not realize you’re dealing with an array. Further,
Get-Memberwill, by default, not show you that you’ve got an array–
it figures you’re probably interested in what’s inside the array,
creating even more confusion.

One trick:

1 $MAC.Count

That’ll return a nonzero number if you’ve got an array (to be fair, it
can also return zero if you’re referring to an empty array, but that’s
rare in the specific scenario outlined here), and you’ll get an error if
you’re not dealing with an array (unless you happen to find a rare
object that has a Count property).

Problem 4: On Magic
Quote Timing

The following is a snippet; a more complete code example is
available in the GitHub repo described in the front matter to this
book. The stated problem with this code is that, while it basically
works fine (well, the complete version does), the email alerts never
contain the error message desired.

1 Import-Module ActiveDirectory

2

3 $Smtpserver = "smtpmail.domain.com"

4 $From = "noreply@domain.com"

5 $To = "user@domain.com"

6 $Subject = "Delete Stale Computers Failed"

7 $Body = "The Delete Stale computers script failed due to \

8 error '$($errormessage)'. One of the OU's listed maybe \

9 missing in Active Directory. Please review the list of O\

10 U's and check if they are still present in Active Directo\

11 ry"

12

13 $date = [DateTime]::Today.AddDays(-180)

14

15 $ous = @('OU=Name,DC=domain,DC=com')

16

17

18 Get-AdComputer -Properties LastLogonDate -Filter {LastLog\

19 onDate -le $date} -Searchbase $_

20

21

22 if ($error[0].exception.message.Contains("Directory objec\

Problem 4: On Magic Quote Timing 20

23 t not found")) {

24 $errormessage = $error[0].exception.message.T\

25 oLower()

26 Send-MailMessage -SmtpServer $Smtpserver -Fro\

27 m $From -To $To -Subject $Subject -BodyAsHtml $Body

28 $error.Clear()

29 }

You can see where the error message variable is included in the
email body:

1 $Body = "The Delete Stale computers script failed due to \

2 error '$($errormessage)'. One of the OU's listed maybe \

3 missing in Active Directory. Please review the list of O\

4 U's and check if they are still present in Active Directo\

5 ry"

And you can see where $errormessage is being populated:

1 $errormessage = $error[0].exception.message.ToLower()

So that’s the problem?

Spoiler!!

PowerShell uses double quotation marks as “magic quotes.” In
programming languages that support magic quotes, the language
scans for variables or subexpressions, and replaces them with
whatever they evaluate to:

Problem 4: On Magic Quote Timing 21

1 PS C:\> $a = 'Hello'

2 PS C:\> $b = "$a, World'

3 PS C:\> $b

4 Hello, World

There are two ways that languages implement magic quotes, which
I personally call “eager” and “lazy.” In an “eager” language, the
contents of the string are evaluated and replaced when you define
the string. In a “lazy” language, this happens when the string is
retrieved.

PowerShell is an “eager” language. This means that it tried to insert
$errormessage waaaay at the top of the script, rather than after
$errormessage had been populated. The fix here is to move the
email body definition:

1 if ($error[0].exception.message.Contains("Directory objec\

2 t not found")) {

3 $errormessage = $error[0].exception.message.T\

4 oLower()

5 $Body = "The Delete Stale computers script fa\

6 iled due to error '$($errormessage)'. One of the OU's l\

7 isted maybe missing in Active Directory. Please review t\

8 he list of OU's and check if they are still present in Ac\

9 tive Directory"

10 Send-MailMessage -SmtpServer $Smtpserver -Fro\

11 m $From -To $To -Subject $Subject -BodyAsHtml $Body

12 $error.Clear()

13 }

This can seem inefficient, because you’re constantly re-defining the
string, but that’s the way you have to do it in PowerShell. I mean,
there are some other syntactic ways you could get to the same place
of “I have to create a new string every time,” but you’ll still end up
in that place.

Problem 5: On Patterns
and Suppression

Consider this code, which doesn’t produce the intended output.
I’ll give you an up-front thing to look for: there’s both a technical
problem here, as well as some style problems.

1 $ErrorActionPreference = 'SilentlyContinue'

2

3 $ComputerName =Get-ADComputer -Filter {(Name -like "*")} \

4 -SearchBase "OU=AsiaPacific,OU=Sales,OU=UserAccounts,DC=F\

5 ABRIKAM,DC=COM" | Select-Object -ExpandProperty Name

6

7 $results = @()

8

9 ForEach ($computer in $ComputerName) {

10

11 $Results += Get-NetAdapter -CimSession $ComputerName | Se\

12 lect-Object PsComputerName, InterfaceAlias, Status, MacAd\

13 dress

14

15 }

16

17 $results | Export-csv -path C\users\bret.hooker\desktop\m\

18 acaddress.csv -Append

What would you change?

Problem 5: On Patterns and Suppression 23

Spoiler!!

First off, let’s address the style problems. I personally have a huge
problem with:

1 $ErrorActionPreference = 'SilentlyContinue'

Sitting along at the top of a script, this simply disables error
reporting, and it’s the main reason this script becomes harder to
debug. PowerShell is returning a useful error message for the main
technical problem in this script, but that message is being ruthlessly
suppressed. This is not a good way to gracefully handle errors; a
good read of The Big Book of PowerShell Error Handling⁸, which is
also available in a Spanish translation, concisely outlines the right
way to handle anticipated errors without removing useful ones.

Next, let’s look at the technical problem:

1 $Results += Get-NetAdapter -CimSession $ComputerName | Se\

2 lect-Object PsComputerName, InterfaceAlias, Status, MacAd\

3 dress

The problem here is that $ComputerName, if you follow the logic of
the script, contains a computer name. That isn’t what -CimSession
needs, though.ManyCIM-based cmdlets don’t comewith a -ComputerName
parameter; instead, you’re expected to use New-CimSession to spin
up a new session, and then query against it. This line of code also
reveals a major style problem that goes against a core PowerShell
coding pattern: accumulating output in an array. The Big Book of
PowerShell Gotchas⁹ outlineswhy and suggests amore PowerShell-
native approach. There are two main reasons: appending to arrays
is memory-intensive, as the array has to be recreated each time, and

⁸https://leanpub.com/thebigbookofpowershellerrorhandling
⁹https://leanpub.com/thebigbookofpowershellgotchas

https://leanpub.com/thebigbookofpowershellerrorhandling
https://leanpub.com/thebigbookofpowershellgotchas
https://leanpub.com/thebigbookofpowershellgotchas
https://leanpub.com/thebigbookofpowershellerrorhandling
https://leanpub.com/thebigbookofpowershellgotchas

Problem 5: On Patterns and Suppression 24

because this approach mis-uses the PowerShell pipeline. It’s very
common to see people familiar with other programming languages
do this, because they’re jumping in without really getting what the
pipeline is all about. That’s fine! It’s a learning experience!

Finally, there’s a kinda-technical problem here:

1 -Filter {(Name -like "*")}

This is a little overwrought, and it’s going to take longer for the
domain controller to process. I’d just use -Filter * instead. Neither
the original script, nor my revision, seeks to address situations
where the number of queried objects exceeds the domain con-
troller’s query limit.

I’d rewrite this to look something like this:

1 Function Get-NetAdapterInfo {

2 [CmdletBinding()]

3 Param(

4 [Parameter(Mandatory=$True)]

5 [string]$SearchBase

6)

7

8 Get-ADComputer -Filter * -SearchBase $SearchBase |

9 Select -Expand Name |

10 ForEach-Object {

11 $session = New-CimSession -ComputerName $_

12 Get-NetAdapter -CimSession $session |

13 Select-Object PsComputerName, InterfaceAlias, Status, M\

14 acAddress

15 }

16

17 }

18

19 Get-NetAdapterInfo -searchbase "ou=whatever,dc=domain,dc=\

20 com" | Export-CSV Whatever.csv

Problem 5: On Patterns and Suppression 25

I’ve rewritten this as a proper advanced function, which is how
pretty much everything in PowerShell should be done. That sepa-
rates the script’s functionality, which is querying network adapter
info, from the destination, which in this case is a CSV. By outputting
objects, one at a time, to the pipeline, the function becomes self-
contained and its output can be sent anywhere.

I’ve made the function parameterized, so that it can be self-
contained while accepting new -SearchBase data each time it’s run.

I’ve also corrected the problem with -CimSession, and removed the
error suppression. I did not add proper error handling, which is
certainly something I might want to do when spinning up the new
CIM session. I’d likely do that in the next revision of the function.

Problem 6: On
Formatting Numbers in

Strings
Here’s a snippet of code. This one, I’m not including in the GitHub
repo, because there’s really only a couple of lines to worry about.
For context, here’s the large chunk:

1 $SourceFile = "C:/Temp/File.txt"

2 $DestinationFile = "C:/Temp/NonexistentDirectory/File.txt"

3

4 If (Test-Path $DestinationFile) {

5 $i = 0

6 While (Test-Path $DestinationFile) {

7 $i += 1

8 $DestinationFile = "C:/Temp/NonexistentDirectory/File$i.t\

9 xt"

10 }

11 } Else {

12 New-Item -ItemType File -Path $DestinationFile -Force

13 }

14

15 Copy-Item -Path $SourceFile -Destination $DestinationFile\

16 -Force

The desire is for the destination files to be named File00001.txt

and so on, but obviously as-is it’s producing File1.txt. Here’s the
couple of relevant lines:

Problem 6: On Formatting Numbers in Strings 27

1 $i += 1

2 $DestinationFile = "C:/Temp/NonexistentDirectory/File$i.t\

3 xt"

How would you achieve the intended outcome?

Spoiler!!

This is a place where PowerShell’s oft-ignored and mostly under-
used -f formatting operator comes into play.

1 "{0} there {1}" -f "Hello",$name

Like most operators, -f takes two operands. The first is a string,
which can contain {0} placeholders. The second is an array of
values, which are thenmapped into those placeholders. Placeholder
numbering starts at zero.

But those placeholders can do a lot more, because you can “tag”
them with formatting instructions. This lets them format numbers
and dates, particularly, in a huge variety of ways. There’s a great
article¹⁰ with some very useful and specific examples, but I find
myself consulting the .NET string formatting documentation¹¹,
because although it’s very developer-y, it’s also very complete and
it’s what the -f operator is using under the hood.

In this case, we want to take a number and left-pad it with a certain
number of zeroes.

1 "{0:d5}" -f 1

This says I want a 5-digit number, and PowerShell will left-padwith
zeroes as needed to hit that quantity. So:

¹⁰https://social.technet.microsoft.com/wiki/contents/articles/7855.powershell-using-the-f-
format-operator.aspx

¹¹https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx

https://social.technet.microsoft.com/wiki/contents/articles/7855.powershell-using-the-f-format-operator.aspx
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx
https://social.technet.microsoft.com/wiki/contents/articles/7855.powershell-using-the-f-format-operator.aspx
https://social.technet.microsoft.com/wiki/contents/articles/7855.powershell-using-the-f-format-operator.aspx
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx

Problem 6: On Formatting Numbers in Strings 28

1 $DestinationFile =

2 "C:/Temp/NonexistentDirectory/File{0:d5}.txt" -f $i

This would produce filenames like File00001.txt, File00010.txt,
and so on.

Problem 7: On Parsing
Strings

This one’s less of a “broken script” and more of a problem that tests
your knowledge of PowerShell toolmaking patterns. Suppose you
have a data file that consists of multiple lines. Each line looks like
this:

1 NM1*PR*2*MEDICARE COMPLETE*****PI*map1stString

There’s no header, but each * denotes a field. You’ll notice that
some of the fields are empty; that isn’t the case on every single
line, but it’s something you need to consider. Your immediate need
is to read these in, and where the fourth field reads “MEDICARE
COMPLETE,” you need to change it to “MEDICAREALL,” and then
re-write all the lines back out to the data file.

How would you do this?

Spoiler!!

A lot of folks tackle this as a string-parsing problem, and they’re
not wrong to do so. However, what I see a lot of people do is spend
a lot of time parsing out the data they want. For example:

Problem 7: On Parsing Strings 30

1 ForEach ($line in (Get-Content file.txt)) {

2 If ($line -like '*MEDICARE COMPLETE*') {

3 Write $line -replace 'MEDICARE COMPLETE','MEDICARE ALL'

4 } else {

5 Write $line

6 }

7 }

Or something along those lines. This kind of misses the point of
PowerShell, which is to act as a wrapper around other, hard-to-do
stuff. PowerShell takes stuff which isn’t structured, like text, and
turns it into structured objects. I would start by writing myself a
set of Import- and Export- commands which respectively read-in
that text and created objects, and wrote-out those objects into the
desired string state. In this case, the hard work’s already been done:

1 Function Import-MyDataFile {

2 [CmdletBinding()]

3 Param(

4 [Parameter(Mandatory=$True)]

5 [string]$FilePath

6)

7 $headers = @('Code','Type','Value',

8 'Name','Amount','Extended','Allowed','Denied',

9 'System','Note')

10 Import-CSV $FilePath -Delim "*" -Header $headers

11 }

12

13 Function Export-MyDataFile {

14 [CmdletBinding()]

15 Param(

16 [Parameter(Mandatory=$True)]

17 [string]$FilePath,

18 [Parameter(ValueFromPipeline=$True)]

19 [string[]]$InputObject

Problem 7: On Parsing Strings 31

20)

21 BEGIN {

22 $data = @()

23 }

24 PROCESS {

25 $data += $InputObject

26 }

27 END {

28 $InputObject | Export-CSV $FilePath Delim '*' -NoHead

29 }

30 }

See, the -CSV commands can already handle any kind of delimited
data, so I’ve just “wrapped” them into a version specific to my data,
which uses * as delimiters. I’ve also specified headers (which I made
up for this example, but presumably in a production environement
someone could tell me what each field meant), so I can have a
convenient way of referring to my data. Having done that:

1 Import-MyDataFile input.txt |

2 ForEach {

3 $_.Name = $_.Name -Replace `

4 'MEDICARE COMPLETE','MEDICARE ALL'

5 } |

6 Export-MyDataFile output.txt

Or something broadly like all that. The syntax here isn’t my point
so much as the pattern. If you’re going to engage in text-parsing,
then always do so with the goal of producing objects, rather than
directly manipulating text. Objects become easier to work with
since PowerShell is geared around objects (and is very much not
geared around text). Having done this work to parse strings into
objects and back again, future tasks working with this same data
structure will be vastly faster and simpler, meaning I get a big
return on my investment.

Problem 7: On Parsing Strings 32

All this applies, in my mind, anytime I’m looking at text files. For
example, I see people killing themselves parsing log files, trying to
find a line that contains some specific text, which is often partly
variable, so they end up writing tortuous regular expressions. I’d
rather front-load all that work, parse the entire file into objects,
and then deal with the objects. PowerShell loves structured data
(objects) and is much better at working with them than it is dealing
with huge wedges of text.

Bear in mind that ConvertFrom-String exists in newer versions of
Windows PowerShell, and is very powerful at turning unstructured
text into structured data with a lot less work on your part. Use
what’s in the shell to reduce your workload!

Problem 8: Mix ‘n’ Match
This one’s one of those “gotchas” that you either have run into and
will spot immediately, or that can be extremely vexing. It catches
newcomers all the time. This is a code snippet:

1 Get-ADUser : Parameter set cannot be resolved using the s\

2 pecified named parameters.

3 At C:\Work\test.ps1:10 char:34

4 + Get-ADUser -Filter {Company -like "*Paul*"} -Identity $\

5 _.s ...

6 +

7 + CategoryInfo : InvalidArgument: (:) [Get-A\

8 DUser], ParameterBindingException

9 + FullyQualifiedErrorId : AmbiguousParameterSet,Micro\

10 soft.ActiveDirectory.Management.Commands.GetADUser

11

12 Get-ADUser -Filter {Company -like "*Paul*"} -Identity $_.\

13 sAMAccountName -Properties DisplayName, LastlogonDate, En\

14 abled, AccountLockoutTime, LastBadPasswordAttempt, BadPwd\

15 Count, LockedOut, Company, Description

Do you see the problem?

Spoiler!!

This one not only highlights the importance of the help files in
PowerShell, but the importance of knowing all the little clues they
give you. Go ahead and read the documentation for Get-ADUser¹².

¹²https://docs.microsoft.com/en-us/powershell/module/addsadministration/get-aduser

https://docs.microsoft.com/en-us/powershell/module/addsadministration/get-aduser
https://docs.microsoft.com/en-us/powershell/module/addsadministration/get-aduser

Problem 8: Mix ‘n’ Match 34

The only docs actually make this a bit more clear, visually, than
then in-product help files.

Notice that the first block of syntax includes a -Filter parameter,
but no -Identity parameter. The second block has -Identity,
but not -Filter. That means those two parameters are mutually
exclusive; they exist in different parameter sets, and you cannot
mix and match between parameter sets in PowerShell. You must
choose either of them (or one of the other sets), but you can’t use
both.

There’s also a kind of semantic problem in the original code snippet.
It’s attempting to select a given user by their SAM Account Name
(which is unique in all of a single directory), and then filter
for just those users whose Company field contains “Paul.” That’s
nonsensical; PowerShell parameters are nearly always additive not
alternative, you couldn’t have more than one user with a given
SAM Account Name, and so there’s no sense to “also” filter the
results by Company. The -Identity parameter always returns zero
or one user; that’s why it cannot be used alongside -Filter, which
can return more than one.

If the intent here was to get all users matching the SAM Account
name or having a given string in the Company field, you’d likely
need to run two queries and aggregate the output of them. Al-
ternately, if the intent was to get all the users having a specific
Company field, and then narrow the results down, you’d probably
perform that Company query first, and then pipe the results to
Where-Object to filter them further. You can get the domain con-
troller to do more complex filters using an -LDAPFilter, but that
uses its own specialized syntax that isn’t always widely understood
by everyone.

Problem 9: The Return
ofâ€¦

This is another common gotcha in PowerShell. But, rather than tell
you what the problem is with the code, I want you to figure it out
for yourself. You’ll need to predict what the problem will be, as in
what someone might complain about if they wrote this themselves
and then ran it. And then, create a working version. This is a tiny
snippet, so there won’t be a version in the download repository.

1 Function Get-ServiceStatus {

2 [CmdletBinding()]

3 Param(

4 [Parameter(Mandatory=$True)]

5 [string[]]$Name

6)

7 ForEach ($item in $name) {

8 $svc = Get-Service $item

9 Return $svc.status

10 }

11 }

Spolier!!

The return keyword is a tricky one in PowerShell. It’s especially
confusing for programmers from another language, who think they
know what it does based on their past experience. Honestly, return
is something that many on the PowerShell product team regret, for
the confusion it’s caused.

Problem 9: The Return ofâ€¦ 36

In PowerShell v5 classes, return does what it should do based on
how other languages work: if PowerShell sees you using return in
a class, it suppresses other things that are output to the pipeline.
Instead, it only outputs whatever return tells it to, and then it exits
the class method. That’s how return “should” work.

But anywhere else in PowerShell, as in the function in this chapter,
return simply emits one last thing to the pipeline and then exits.
Anything you’ve previously output to the pipeline still gets output,
which can be confusing. For example:

1 Function test {

2 Write "one"

3 Return "two"

4 Write "three"

5 }

This will output “one” and “two,” but never output “three.” That’s
because return is basically a special shortcut to Write-Output, one
that does indeed output to the pipeline, but that then exits the
function. In fact, this test example is how most people encounter
their first return “gotcha,” because they won’t expect the function
to output anything other than just “two.”

In this chapter, however, we got something a bit different. The
function will work sometimes. Specifically, it’ll work fine when you
run it with one service name. But give it two names, and it’ll only
output the status of the first service, because return forces it to exit
afterwards. A proper rewrite of this function:

Problem 9: The Return ofâ€¦ 37

1 Function Get-ServiceStatus {

2 [CmdletBinding()]

3 Param(

4 [Parameter(Mandatory=$True)]

5 [string[]]$Name

6)

7 ForEach ($item in $name) {

8 $svc = Get-Service $item

9 Write-Output $svc.status

10 }

11 }

Generally speaking, this is the pattern you should see in Pow-
erShell. PowerShell functions should be designed to work in the
pipeline, which means they should output items to the pipeline, and
be prepared to output multiple items if needed.Generally speaking,
outside of a class, there’s no reason to use the return keyword in
PowerShell. It’s “syntax sugar,” and misleading sugar at that.

There’s some debate overwhether to Write-Output $something

versus just running $something, without the Write-Output

command. The end result is the same; there’s a tiny amount of
additional overhead in using the command, but unless you’re
enumerating across thousands of objects, you’ll never notice,
and including the command makes the code more readable.

Whenever I see return in a function, I immediately suspect that
the author is working based on knowledge of other programming
languages. I’ll often see them accumulating output in an array,
rather than immediately outputting each item to the pipeline–
another “no-no” in most PowerShell situations.

Problem 10: True
Equality

Here’s the code - spot the problem!

1 do {

2 get-aduser -filter * | select SamAccountName | ForEach\

3 -Object {

4

5 if ($_.SamAccountName -eq $username) {

6 $username = $firstname+($lastname.Substring(0,$i))

7

8 $i++

9 write-host $username

10 }

11 else {

12 $usernameexists = $false

13

14 }

15 }

16 }

17 until ($usernameexists = $false)

18

19 Write-Host "Username is $username" -ForegroundColor Green

Spoiler!!

Did you catch it? Being able to statically read code and find a
problem is a really key skill, one that takes years, sometimes, to
really build up to.

Problem 10: True Equality 39

1 until ($usernameexists = $false)

That’s the problem. SO easy to make, and one I made a LOT in the
early days of PowerShell when I was switching from VBScript. You
see, = isn’t an equality operator in PowerShell, it’s an assignment
operator. The equality operator is -eq:

1 until ($usernameexists -eq $false)

Or, if you know $usernameexists will always be True or False:

1 until (-not $usernameexists)

Fun trivia: the reason PowerShell uses -gt and similar operators,
versus the more traditional < and such, is becauseMicrosoft wanted
to use > for redirection, like shells commonly do. It was difficult to
get the parser to understand that sometimes > meant redirection
and other times it meant “less than,” and so they switched to a dif-
ferent syntax for operators. Pretty much all comparison operators
now start with a - in PowerShell.

Problem 11:
Argumentative

Try to solve this one without running the code. But, it’s okay to look
at help files, if you want. Because this one is a long, single line, I’m
going to kind of arbitrarily break it up to make it easier to read.

1 Start-Process -FilePath "C:\BootStrap\$($Using:MSIFile.Na\

2 me)"

3 -ArgumentList "/passive /norestart"

4 -Wait

5 -PassThru

This probably won’t work. Do you know why?

Spoiler!

The clue is in the help files for Start-Process:

1 Start-Process

2 [-FilePath] <String>

3 [[-ArgumentList] <String[]>]

4 [-WorkingDirectory <String>]

5 [-PassThru]

6 [-Verb <String>]

7 [-WindowStyle <ProcessWindowStyle>]

8 [-Wait]

9 [<CommonParameters>]

Problem 11: Argumentative 41

As you see here, -ArgumentList expects an array of strings. We’ve
just given it one string. The <String[]> part is the giveaway, with
the [] indicating that an array of strings is expected. We’d type that
as a comma-separated list, and PowerShell would convert those to
an array for us. So, like this, right?

1 -ArgumentList "/passive,/norestart"

Nope!With the comma inside the quotes, we’re still passing a single
string. We need this:

1 -ArgumentList "/passive","/norestart"

Where the comma separates two distinct strings. So that’s probably
better. More specifically, Example 7 in the help file shows exactly
this usage, highlighting how important it is to explore those help
files!

Problem 12: Assignment
and Output

Why does this output “pony”?

1 ($a = "pony")

Spoiler!

This is actually really tricky, in terms of what’s happening. Let’s
start by just looking at a simpler version:

1 "pony"

Whenever PowerShell encounters a command-line that consists of
an expression, it has to figure out what to do with it. So it calls its
default command, Write-Output. The above is exactly the same as
this, in terms of functionality:

1 Write "pony"

Of course, Write is just an alias to Write-Output, which means it’s
functionally the same as:

1 Write-Output "pony"

Functionally the same. In fact, these three examples have different
actual performance:

Problem 12: Assignment and Output 43

• "pony" .512ms
• Write "pony" 31.37ms
• Write-Output "pony" 7.137ms

The use of the alias taking longer kind of makes sense, since
PowerShell has to look up the alias first. But it surprises a lot of
folks to learn that using Write-Output actually takes longer than
just letting it happen “by default.” Obviously, the numbers will
differ from system to system based on system load, but the relative
differences are what’s interesting.

Anyway, consider this:

1 $a = "pony"

This will place the string “pony” into $a and return nothing. So why
does this return something?

1 ($a = "pony")

There’s kind of a little under-the-hood sneakiness going on. In this
case, $a will still contain “pony:”

1 PS /> ($a = "pony") \

2

3 pony

4 PS /> $a \

5

6 pony

7 PS />

It’s just in that specific situation, where you’ve created a parenthet-
ical expression, PowerShell both executes it and returns the result.
It’s intended to be useful I cases like if or while constructs, where

Problem 12: Assignment and Output 44

you use a parenthetical expression to determine logical flow, but
you also want the assignment to actually take effect. It’s kind of a
bit niche, meaning you don’t see folks use it a lot, but it’s one of the
“syntax sugar” things that PowerShell has stashed around inside its
brain.

Honestly, if you’re thinking, “this makes no sense to me,” I get it.
It’s a kind of programmer-y thing, and there’s no reason you have
to use this syntax.

Problem 13: Tricky
Parameter Sets

Here’s the code (which is in the code samples in GitHub, too):

1 function Test-ParameterSet

2 {

3 [CmdletBinding(

4 DefaultParameterSetName = "all"

5)]

6 Param

7 (

8 [Parameter(Mandatory = $false,

9 Position = 0)]

10 [ValidateNotNullorEmpty()]

11 [String]$apiKey,

12 [ValidateSet("Prod", "Dev")]

13 [Parameter(Mandatory = $false)]

14 $environment = "Dev",

15 [Parameter(Mandatory = $false)]

16 [int]$maxItems,

17 [Parameter(Mandatory = $false,

18 ParameterSetName = "all")]

19 [switch]$all,

20 [Parameter(Mandatory = $false,

21 ParameterSetName = "byCustomerId")]

22 [Parameter(ParameterSetName = "byId")]

23 [Parameter(ParameterSetName = "byName")]

24 [string]$customerId,

25 [Parameter(Mandatory = $false,

26 ParameterSetName = "byId")]

Problem 13: Tricky Parameter Sets 46

27 [Parameter(ParameterSetName = "byCustomerId")]

28 [string]$id,

29 [Parameter(Mandatory = $false,

30 ParameterSetName = "byName")]

31 [Parameter(ParameterSetName = "byCustomerId")]

32 [string]$name

33)

34

35 Write-Output $PSCmdlet.ParameterSetName

36

37 }

Now look, that’s a lot to read, and it’s not especially well-formatted.
So let’s break it down a bit in English. We have four parameters:
-All, -CustomerId, -Id, and -Name. Here’s how we want them used:

1. We use -All, and cannot use any other parameter.
2. We use -CustomerId, and do not use any other parameter.
3. Use use -CustomerId and also use -Name.
4. Use use -CustomerId and also use -Id.

That right there is a tricky set of requirements. Parameter set #1
is easy, but #2-4 create a problem. You see, in #2, we want only
-CustomerId, but we don’t want any other parameter. So we might
be inclined to make -Name and -Id optional parameters. But in
that case, PowerShell can’t differentiate between sets 2-4. It’s let
us use -Name and -Id at the same time, since they’re both optional.
Optional parameters, basically, can’t be used to “put yourself” into
a parameter set, because PowerShell can’t distinguish between “a
set where a parameter isn’t available” and “a set where a parameter
is available, but not used.”

So how could we fix this?

Problem 13: Tricky Parameter Sets 47

Spoiler!!

You could probably define four sets. Set one makes -Allmandatory,
set 2 includes only -CustomerId as mandatory, set 3 makes both
-CustomerId and -Name mandatory, and set 4 makes -CustomerId

and -Idmandatory. If you had other usage scenarios, though, things
would start to get more complex.

Parameter sets can be super-complex. You kind of have to think
about them in terms of how PowerShell thinks about them.

PowerShell starts by looking at the parameters you have typed. It
looks for any parameter setswhich do not include those parameters,
and basically wipes them from its mind. The only parameter sets
in consideration, then, are all the sets that contain every parameter
you’ve typed so far.

You need to keep typing parameters, then, until there’s only one set
remaining in consideration.

So, consider this:

1 [Parameter(Mandatory, ParameterSetName = "A")]

2 [switch]

3 $All,

4

5 [Parameter(Mandatory, ParameterSetName = "B")]

6 [Parameter(Mandatory, ParameterSetName = "C")]

7 [Parameter(Mandatory, ParameterSetName = "D")]

8 [string]

9 $CustomerID,

10

11 [Parameter(Mandatory, ParameterSetName = "B")]

12 [string]

13 $ID,

14

15 [Parameter(Mandatory, ParameterSetName = "C")]

Problem 13: Tricky Parameter Sets 48

16 [string]

17 $Name

Now suppose we type:

1 Whatever-Command -Name "BLAH"

Which sets are in consideration? Only “C.” It’s the only set that
contains -Name. But we could also add -CustomerId, since it “lives”
in set “C” also. In fact, we must add -CustomerId, because it is
mandatory in all sets in which it exists. Now, let’s change the
definitions a bit:

1 [Parameter(Mandatory, ParameterSetName = "A")]

2 [switch]

3 $All,

4

5 [Parameter(Mandatory, ParameterSetName = "B")]

6 [Parameter(Mandatory, ParameterSetName = "C")]

7 [Parameter(Mandatory, ParameterSetName = "D")]

8 [string]

9 $CustomerID,

10

11 [Parameter(ParameterSetName = "B")]

12 [string]

13 $ID,

14

15 [Parameter(ParameterSetName = "C")]

16 [string]

17 $Name

Now suppose we type:

Problem 13: Tricky Parameter Sets 49

1 Whatever-Command -CustomerId "BLAH"

Which sets are in play? “B,” “C,” and “D” are. After all -CustomerId
lives in all three of those. If we added -Id, we’d be locked into set
“B.” If we added -Name, we’d be locked into set “C.” But there’s no
way to lock ourselves into set “D!” Because -Name and -Id aren’t
mandatory, PowerShell can’t decide which set we’re trying to use!
See the difference?

Problem 14: The Business
Case

For this problem, we’re going to take a slightly different tack.
Consider this business need:

I have a script that needs to send a command to a
remote machine. We’ve enabled PowerShell Remoting,
so I can use Invoke-Command to do this. However, the
script won’t be running under a user account that has
permission to connect via Remoting. How can I have
the script, which needs to run unattended on a schedule,
send an alternate credential?

How would you solve this? Here’s a hint: perambulations with the
-Credential parameter of Invoke-Command are not the best solution.

Spoiler!!

The problem with the -Credential parameter is that, almost no
matter what you do, you’re storing potentially powerful credentials
someplace where they can be retrieved with relative ease. Perhaps
not in clear text, but in reality not much better than clear text.

The solution here is PowerShell’s ability to create constrained
endpoints in Remoting. PowerShell’s Just Enough Administration,
or JEA, module can make these easier to set up, but you can set
them up manually, too. Secrets of PowerShell Remoting, available
at PowerShell.org, covers the basics.

To explain this, let’s put some names to things.

Problem 14: The Business Case 51

• We want to run a Scheduled Task that is a PowerShell script.
• The Scheduled Task will run under a Task User Account of
some kind. This can’t be LocalSystem, though; it needs to be
a legit user account that both machines can authenticate, like
a domain user. But it doesn’t need to be an admin of any kind.

• The Scheduled Task needs to use Invoke-Command to send
commands to a Remote Computer. The command(s) being
sent are known in advance, and we call that the Command
List.

• The commands on the Command List need to be executed by
a Privileged User Account in order to work. This might be
an admin.

Here’s what we do:

1. On the Remote Computer, we create a new PowerShell Re-
moting endpoint.

2. We configure the endpoint with the Command List, so it can
only run those commands.

3. We configure the endpoint to only provide access to the Task
User Account.

4. We configure the endpoint to “Run As” the Privileged User
Account.

5. We configure the Scheduled Task to use Invoke-Command to
send its commands. There’s no need to use the -Credential

parameter.

A safe way of remotely using alternate credentials in a variety of
situations, including a scheduled task.

Problem 15: Not Your
Father’s Programming

Language
PowerShell is a shell, and it contains a programming language. But
most programmers wouldn’t really love PowerShell as a program-
ming language; it takes a lot of liberties that most languages don’t.
Here’s a good example of where you can go wrong:

1 function GetDriver([string]$RegKey, [string]$oracle_home)\

2 {

3 rrlog 2 "(L# 102): RegKey: '$($RegKey)'"

4 $theDriverWeWant="some string"

5 return $theDriverWeWant

6 }

7 $theDriverWeWant = GetDriver $RegKey $oracle_home

Go ahead and pick that apart a bit. As-is, it will not produce a string
output, which is what the author seems to expect. Why or why not,
and what else needs fixing?

Spoiler!!

This kind of function declaration almost always tells me we’re
dealingwith a “real programmer” whomight be new to PowerShell:

Problem 15: Not Your Father’s Programming Language 53

1 function GetDriver([string]$RegKey, [string]$oracle_home)\

2 {

Now, that’s totally legal in PowerShell, but it’s not how we’d
normally declare a function and its parameters. This isn’t a problem
per se, but it does make me alert for some of the other “I’ve been
programming in real languages for years” gotchas I’m likely to see.
In PowerShell, we’d normally write this as:

1 function GetDriver {

2 Param([string]$RegKey,

3 [string]$oracle_home)

4 }

So now let’s look at where the real problem lies:

1 rrlog 2 "(L# 102): RegKey: '$($RegKey)'"

2 $theDriverWeWant="some string"

3 return $theDriverWeWant

That return keyword is a huge red flag, because it suggests that
the author thinks PowerShell functions return a single value. You
know, like in every other programming language ever. But that’s
not the case. The output of a PowerShell command (including
functions, which are a kind of command) goes to the pipeline, and
the pipeline is capable of–nay, is delighted to be–handling many
items of output.

In our case, the external command rrlog is doubtless produc-
ing some textual output. Because that hasn’t been captured to a
variable, it winds up in the pipeline as the initial output of the
function. The return keyword then indeed puts something more
in the pipeline and exits the function, but by that time out output
is already hopeless corrupted.

The fix?

Problem 15: Not Your Father’s Programming Language 54

1 rrlog 2 "(L# 102): RegKey: '$($RegKey)'" > $null

2 $theDriverWeWant="some string"

3 Write $theDriverWeWant

Forcing the rrlog output to the $null variable basically suppresses
that output, and switching to write from return clears up any
suggestion that we might not be familiar with PowerShell’s under-
the-hood ticks.

Problem 16: Shall I
Compare Theeâ€¦

Consider:

1 $string = "11/28/2018"

2 $string1 = Get-Date $string -Hour 00 -Minute 00 -Second 00

3 $string2 = Get-Date -Hour 00 -Minute 00 -Second 00

4 $string1.ToString() -ge $string2.ToString()

This works as-expected. The following, however, does not:

1 $string = "11/28/2018"

2 $string1 = Get-Date $string -Hour 00 -Minute 00 -Second 00

3 $string2 = Get-Date -Hour 00 -Minute 00 -Second 00

4 $string1 -ge $string2

How come?

Spoiler!!

What PowerShell displays on the screen after you run a command
is the result of a complex formatting system, meaning the actual
objects produced by the command might not be visible to you. For
example, the object produced by Get-Date has a milliseconds prop-
erty which isn’t ordinarily displayed. So even a straightforward
comparison:

Problem 16: Shall I Compare Theeâ€¦ 56

1 (Get-Date) -eq (Get-Date)

That’ll return False sometimes, because a millisecond elapses be-
tween the first Get-Date executing and the second one running. So
to walk through our “failing” example:

1 $string = "11/28/2018"

Our variable now contains a date-only string. PowerShell can parse
that into a proper DateTime object:

1 $string1 = Get-Date $string -Hour 00 -Minute 00 -Second 00

But this isn’t a “full resolution” DateTime, so the millisecond
property is unknown.

1 $string2 = Get-Date -Hour 00 -Minute 00 -Second 00

We’ve produced what SHOULD be today’s date, but, again, we’ve
missed the milliseconds.

1 $string1 -ge $string2

And so we get unexpected output. Always remember: what you see
on the screen isn’t necessarily the truth. Always pipe things to fl

* and gm to make sure you’re seeing the fully real thing in front of
your weak organic eyeballs.

Problem 17: Debug Me
Just start with this code:

1 $Userdata = Import-Csv C:\empID.csv

2 ForEach ($User in $Userdata) {

3 $User = $User.User

4 $Department = $Department.Department

5 Get-ADUser -Filter "EmployeeNumber -eq '$User'" -Proper\

6 ties * |

7 set-AdUser -Add "'$User' -eq 'Department'" -Properties\

8 Department

9 }

That’s also in the downloadable code samples.

There are three main problems. Can you spot them?

Spoiler!!

First off, the ForEach loop is using $User as its enumerator variable,
but then immediately overwriting that:

1 ForEach ($User in $Userdata) {

2 $User = $User.User

The $User variable is no longer a single item from $Userdata, which
messes up the code a bit further down. Second is this:

Problem 17: Debug Me 58

1 $Department = $Department.Department

The $Department variable is undefined to this point; it’s probably
meant to be:

1 $Department = $User.Department

Presuming that $User had not been improperly overwritten as
noted previously. A correct version might be:

1 $Userdata = Import-Csv C:\empID.csv

2 ForEach ($User in $Userdata) {

3 $User2 = $User.User

4 $Department = $User.Department

5 Get-ADUser -Filter "EmployeeNumber -eq '$User2'" -Prope\

6 rties * |

7 set-AdUser -Add "'$User2' -eq 'Department'" -Propertie\

8 s Department

9 }

Except that the -Add parameter is being used improperly. This is
probably correct:

1 Set-ADUser -Department $Department

Did you get them all?

Problem 18: Literally the
Registry

Here’s the code:

1 function Test-RegistryValue {

2 param (

3 [parameter(Mandatory=$true)]

4 [ValidateNotNullOrEmpty()]$Path,

5 [parameter(Mandatory=$true)]

6 [ValidateNotNullOrEmpty()]$Name

7)

8 try {

9 Get-ItemProperty -Path $Path `

10 -Name $Name `

11 -ErrorAction Stop |

12 Out-Null

13 return $true

14 } catch {

15 return $false

16 }

17 }

Now, here’s that command in use, and it’ll generate the wrong
results:

1 Test-RegistryValue -Path "HKLM:\SOFTWARE\Misc*" `

2 -Name "test"

The asterisk is deliberate; the example presumes that there is a key
named SOFTWAREMisc*. So what’s wrong?

Problem 18: Literally the Registry 60

Spoiler!!

The problem with using a “file system” paradigm for things other
than the file system is that certain characters in the actual file
system, like ? and *, are illegal, and used for special purposes; else-
where, however, those characters are perfectly legal and shouldn’t
be treated as special.

The trick here is this:

1 Get-ItemProperty -Path $Path `

2 -Name $Name `

3 -ErrorAction Stop |

Should be this:

1 Get-ItemProperty -LiteralPath $Path `

2 -Name $Name `

3 -ErrorAction Stop |

The -LiteralPath parameter forces all characters to be treated as
literals, not as special wildcards. My other suggestion with this
function is to change this:

1 return $true

And the following return $false to be:

1 Write $True

And, of course, Write $False. The return keyword, in anything but
a v5+ class, is misleading. It doesn’t do what return in literally any
other language does, and including it suggests that the person using
it isn’t aware of PowerShell’s somewhat inimical use of return,
meaning they’re likely to get caught in a common “gotcha.”

	Table of Contents
	About This Book
	Introduction
	How to Use This Book
	A Note on Code Samples
	Contacting Me
	Problem 1: On Apples and Apples
	Spoiler!!

	Problem 2: On Alternate Credentials
	Spoiler!!

	Problem 3: On Strings ByValue
	Spoiler!!

	Problem 4: On Magic Quote Timing
	Spoiler!!

	Problem 5: On Patterns and Suppression
	Spoiler!!

	Problem 6: On Formatting Numbers in Strings
	Spoiler!!

	Problem 7: On Parsing Strings
	Spoiler!!

	Problem 8: Mix `n' Match
	Spoiler!!

	Problem 9: The Return ofâ€¦
	Spolier!!

	Problem 10: True Equality
	Spoiler!!

	Problem 11: Argumentative
	Spoiler!

	Problem 12: Assignment and Output
	Spoiler!

	Problem 13: Tricky Parameter Sets
	Spoiler!!

	Problem 14: The Business Case
	Spoiler!!

	Problem 15: Not Your Father's Programming Language
	Spoiler!!

	Problem 16: Shall I Compare Theeâ€¦
	Spoiler!!

	Problem 17: Debug Me
	Spoiler!!

	Problem 18: Literally the Registry
	Spoiler!!

