

DevOps: The Ops Perspective

The DevOps Collective, Inc.

This book is for sale at http://leanpub.com/devopstheopsperspective

This version was published on 2018-10-28

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2018 The DevOps Collective, Inc.

http://leanpub.com/devopstheopsperspective
http://leanpub.com/
http://leanpub.com/manifesto

Also By The DevOps Collective, Inc.
Creating HTML Reports in Windows PowerShell

A Unix Person’s Guide to PowerShell

The Big Book of PowerShell Error Handling

Ditch Excel: Making Historical and Trend Reports in PowerShell

Secrets of PowerShell Remoting

The Big Book of PowerShell Gotchas

The Monad Manifesto, Annotated

Why PowerShell?

Windows PowerShell Networking Guide

The PowerShell + DevOps Global Summit Manual for Summiteers

Why PowerShell? (Spanish)

Secrets of PowerShell Remoting (Spanish)

DevOps: The Ops Perspective (Spanish)

The Monad Manifesto: Annotated (Spanish)

Creating HTML Reports in PowerShell (Spanish)

The Big Book of PowerShell Gotchas (Spanish)

The Big Book of PowerShell Error Handling (Spanish)

DevOps: WTF?

PowerShell.org: History of a Community

http://leanpub.com/u/devopscollective
http://leanpub.com/creatinghtmlreportsinwindowspowershell
http://leanpub.com/aunixpersonsguidetopowershell
http://leanpub.com/thebigbookofpowershellerrorhandling
http://leanpub.com/ditchexcelmakinghistoricalandtrendreportsinpowershell
http://leanpub.com/secretsofpowershellremoting
http://leanpub.com/thebigbookofpowershellgotchas
http://leanpub.com/themonadmanifestoannotated
http://leanpub.com/whypowershell
http://leanpub.com/windowspowershellnetworkingguide
http://leanpub.com/summiteermanual
http://leanpub.com/why-powershell-spanish
http://leanpub.com/secrets-of-powershell-remoting-spanish
http://leanpub.com/devops-the-ops-perspective-spanish
http://leanpub.com/monad-manifesto-annotated-spanish
http://leanpub.com/creating-html-reports-in-powershell-spanish
http://leanpub.com/big-book-of-powershell-gotchas-spanish
http://leanpub.com/big-book-of-powershell-error-handling-spanish
http://leanpub.com/devopswtf
http://leanpub.com/powershellorghistoryofacommunity

Contents

DevOps: The Ops Perspective . 1

What is DevOps? . 2
Some Background . 2
DevOps, for Ops . 3
It’s a Philosophy . 3
It’s an Approach . 4
There’s No Such Thing as a DevOps Team . 4
What DevOps Isn’t . 5

What Does DevOps Look Like? . 6

Operational Capabilities of a DevOps Environment . 9
Automated Environment Creation . 9
Development and Test Infrastructure . 11
End-User Experience Monitoring . 12

IT Ops Skills in a DevOps Environment . 14
Plan for Failure . 16

Operations as Development . 17

DevOps Doesn’t Exclude Anyone . 19

A DevOps Reading List . 20

DevOps: The Ops Perspective
By Don Jones

“DevOps” is such a popular term these days - but what’s it actually mean to an Ops person? This
high-level book attempts to put DevOps into perspective with real-world examples and descriptions.

This guide is released under the Creative Commons Attribution-NoDerivs 3.0 Unported License. The
authors encourage you to redistribute this file as widely as possible, but ask that you do not modify
the document.

Was this book helpful? The author(s) kindly ask(s) that you make a tax-deductible (in the US; check
your laws if you live elsewhere) donation of any amount to The DevOps Collective¹ to support their
ongoing work.

Check for Updates! Our ebooks are often updated with new and corrected content. We make them
available in three ways:

• Ourmain, authoritativeGitHub organization², with a repo for each book. Visit https://github.com/devops-
collective-inc/

• Our GitBook page³, where you can browse books online, or download as PDF, EPUB, or MOBI.
Using the online reader, you can link to specific chapters. Visit https://www.gitbook.com/@devopscollective

• On LeanPub⁴, where you can download as PDF, EPUB, or MOBI (login required), and
“purchase” the books to make a donation to DevOps Collective. You can also choose to be
notified of updates. Visit https://leanpub.com/u/devopscollective

GitBook and LeanPub have slightly different PDF formatting output, so you can choose the one you
prefer. LeanPub can also notify you when we push updates. Our main GitHub repo is authoritative;
repositories on other sites are usually just mirrors used for the publishing process. GitBook will
usually contain our latest version, including not-yet-finished bits; LeanPub always contains the most
recent “public release” of any book.

¹https://devopscollective.org/donate/
²https://github.com/devops-collective-inc
³https://www.gitbook.com/@devopscollective
⁴https://leanpub.com/u/devopscollective

https://devopscollective.org/donate/
https://github.com/devops-collective-inc
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective
https://devopscollective.org/donate/
https://github.com/devops-collective-inc
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective

What is DevOps?
“DevOps,” as a term, doesn’t have a really concrete definition. It’s a philosophy, a way of working,
and it means different things to different people. For themost part, the DevOps community generally
(if reluctantly) accepts the definition from the DevOps article on Wikipedia, which states in part:

…a software development method that stresses communication, collaboration, integra-
tion, automation, and measurement of cooperation between software developers and
other information-technology (IT) professionals.

I don’t personally feel that the definition goes far enough; DevOps is far more that a “software
development method.” However, let’s play along for a moment, and recognize that software rules
the world. The President of the United States didn’t stand up and say, “everyone should learn to
subnet,” he said, “everyone should learn to code.” The massive global Internet, an impressive set of
network infrastructure engineering as has ever been seen, is for the most part a dumb pipe used to
deliver software. Software’s what it’s all about. But software doesn’t get anywhere, or do anything,
without infrastructure. It’s the two working together that make technology useful, and that’s why
DevOps strings together both “Development” and “Operations.” So for this book, I’d like to take the
liberty of slightly re-defining DevOps as:

…an approach to technology management that stresses communication, collaboration,
integration, automation, and measurement of cooperation between software developers
and IT operational (“ops”) personnel for the purpose of creating and delivering software
applications to their users.

Understanding that DevOps is a big thing is important, because it’s actually so big that it’s
almost impossible to look at all at once. It involves numerous techniques, multiple roles within
an organization (that’s why “cooperation” is in the description, along with “collaboration”), and lots
of intersecting technologies. This book isn’t going to try and look at all that.

Some Background

The term “DevOps” was likely coined by Patrick Dubois⁵ , inspired by a Velocity 2009 presentation
by John Allspaw⁶. Philosophically, it’s inspired in large part by the “Lean Manufacturing” teachings
of luminaries like W. E. Deming, Taiichi Ono, Eli Goldratt, and others. That’s important, because

⁵http://jedi.be/blog
⁶https://www.youtube.com/watch?v=LdOe18KhtT4

http://jedi.be/blog
https://www.youtube.com/watch?v=LdOe18KhtT4
https://www.youtube.com/watch?v=LdOe18KhtT4
http://jedi.be/blog
https://www.youtube.com/watch?v=LdOe18KhtT4

What is DevOps? 3

those gents based their thinkings on the premise thatmost workers want to do a good job. A common
thread throughout Lean Manufacturing - and in fact a specific point of Deming’s approach - was to
end reliance on “QA” as a means of achieving quality. Yes, you put measures in place to help people
prevent their own silly mistakes, but you don’t put “gates” in place that assume your workers are
malicious or incompetent. That one principle often becomes the biggest hurdle in adopting Lean
Manufacturing, DevOps, or anything else that derives from that principle.

DevOps, for Ops

Instead, this book will look at the microcosm of DevOps related more specifically to Ops. In any
organization attempting to implement a DevOps approach to life, the operational side of the house
needs to deliver certain capabilities. In many cases, the operational side of the organization needs
to deliver a level of automation and a kind of self-service that allows the Dev side to conduct there
business without as much operational intervention. Operations, in that regard, is all about providing
Development with safe, manageable, monitor-able ways of getting software to the end user, without
it always being a major Operational project. Exactly how you proceed, and what capabilities you
provide, will vary greatly depending on your organization.

In providing those capabilities, Operations will itself have to embark on a certain amount of software
development, to create units of automation that make the operations side of the organization run
more independently. Those software development efforts can themselves be conducted in a very
DevOps-centric fashion, and this book will also focus heavily on that activity.

It’s a Philosophy

DevOps is a lot like accounting, in that it’s a set of abstract principles, approaches, and patterns.
In accounting, you’ve got Generally Accepted Accounting Practices, or GAAP. They’re not rules,
per se, but they’re so generally accepted that they do carry the weight of law in a lot of ways.
DevOps is, or may become, like that, in that it can embody a set of practices and approaches that
are generally recognized as the best way to go. Accounting also has tools that help you implement
its practices. QuickBooks, for example, is a software package that embodies and enforces a lot of
accounting practices, making it easier to put those into effect in your organization. Similarly, the
DevOps world has a number of tools - many still nascent, but DevOps itself is pretty new - that help
you implement DevOps practices and approaches. As the DevOps world tries things, learns from
them, and fine-tunes its approaches, you’ll find more and more tools being created to help make
those approaches easier and more consistent to apply in the real world. In this book, we’ll focus far
more on practices and patterns than on tools, so that we can stay higher-level and not force you to
commit to a particular technology stack.

Unlike accounting, and as I’ve already mentioned, DevOps is really new. And, unlike accounting,
DevOps lives in field that is itself constantly evolving and changing. So don’t expect a lot of concrete,
“here’s what you must do” rules and regulations. Instead, the practice of DevOps is currently 80%

What is DevOps? 4

theory, 10% what people have experienced so far, and 10% pure guesswork. There are a lot of
companies experimenting with DevOps approaches, so as an industry we’re still figuring it out.
Much of this book will focus on what’s been done successfully elsewhere, and look more concretely
at what Operations delivers in those situations.

It’s an Approach

And understand above all that DevOps is a technology management approach. It suggests ways of
managing projects, ways of managing software development, and ways of managing operations.
That said, without management buy-in in your organization, you can’t do DevOps. So if you’re
thinking, “well, my organization will never get behind this idea of developers being able to push
code into production,” then you might as well stop reading right now, unless you’re just interested
for curiosity’s sake. This book, at least, isn’t going to make the case for DevOps in a big way -
that’s been done elsewhere. This book kind of assumes that you’ve already accepted the benefits of
DevOps, and that you’re interested in digging a little deeper into what that means for a traditional
IT operations team.

There’s No Such Thing as a DevOps Team

And let’s be very, very clear: you cannot have a “DevOps Team” in your organization. That’s
nonsensical. DevOps is amanagement approach that encompasses software development, managers,
and operations in a single body. Everyone works together to smooth the creation and deployment
of applications. It’s possible that only one of many internal projects will be conducted in a DevOps
fashion - but given the kinds of changes Ops will need to make in order to facilitate the DevOps
approach, it’s going to be tricky to “do” DevOps in a piecemeal fashion. Just be aware of that -
DevOps is about changing the way you do business, and if you haven’t bought off on that idea, then
it’s always going to feel a little scary and awkward.

You can have specific teams or projects within your organization acting in a DevOps manner,
provided that team is sufficiently cross-functional to provide all the disciplines of Dev, Test, Ops,
and so on that are needed. So the whole IT estate doesn’t need to “go DevOps,” but an individual
project might. That said, having just one project run in a DevOps fashion can be sticky, because
at some point it’s going to run up against your “normal” IT operations, and the two might not get
along.

So, you very well might have teams that behave according to DevOps principles, and you may call
it a “DevOps team” if you have only one. But it’s wrong to think that DevOps is implemented by
some team dedicated to DevOps implementations. It’s not “the team that handles DevOps for us,”
although it might be “a team that behaves according to DevOps.” That’s a super-fine line, perhaps,
but it’s an important distinction.

What is DevOps? 5

What DevOps Isn’t

Given that DevOps is a philosophy… a management approach… and the combination of multiple IT
disciplines… it might be easier to quickly look at some of what it isn’t.

• DevOps is not Agile. That said, your teams might indeed use Agile as a development
methodology within an overall DevOps-style approach. Agile is certainly DevOps-compatible,
and, like DevOps, values short, continual improvement.

• DevOps is not Continuous Integration. That said, CI is often a part of DevOps-style behavior.
The two can be really closely related, in fact - so closely that it’s hard to tell the difference. I
suppose you could argue that it’s difficult to practice the DevOps philosophy without using CI
as an enabling implementation, but you can definitely have CI without behaving like a DevOps
organization, so the two aren’t exactly the same thing.

• DevOps isn’t “the developers running Operations.” If anything, it’s Operations automating
things to the point where Operations runs itself in response to authorized actions taken by
other roles, including developers.

• DevOps isn’t a software development methodology. See the first bullet, above. DevOps is what
happens while software development is happening, and largely what happens when software
development (or a cycle of it), is done. You still need to manage your software development -
you just need to use a methodology that’s DevOps-compatible.

• DevOps is not automation. However, you can’t have DevOps without automation. Automation
is perhaps the biggest thing that Operations brings to the DevOps table, in fact.

Further, it actually seems to be an unstated goal of many DevOps champions to avoid the creation of
any kind of trademarked, rigid, rulebook of “how to doDevOps,” a la ITIL or TQMor something.This
book certainly doesn’t attempt to provide “rules;” the goal here is to provide some understanding of
what DevOps’ broad goals are.

What Does DevOps Look Like?
If we’re going to concentrate on IT Operations’ role in a DevOps organization, it’s useful to think
about what a DevOps project actually looks like. What, exactly, is IT Operations providing? What
capabilities does the organization need? So let’s take a super high-level look at a DevOps-style
project, and what it involves. We’ll dig deeper into various pieces of this in the remainder of this
book.

HOWEVER, I want to emphasize that you can’t achieve DevOps entirely within the Operations
team. DevOps is about thinking of your entire system (a very Deming phrase), from the people who
write the code to the people who use the code, and everything in between. The Operations team has
a contribution, as do many other teams and roles.

There are a lot of people talking about DevOps these days, and so there are a lot of different opinions
on how a “DevOps project” should work. In looking for a concise, high-level explanation, I was
most taken by a description of how Spotify⁷ organizes their IT efforts. While a lot of that description
focuses on how the software developers are organized, the interesting bit for me was that their IT
Operations’ team main job was to create units of automation so that the developers could deploy
code to test, QA, and production on their own. Operations, in other words, facilitated a safe and
managed connection between developers and application (service) users. Ops more or less arranged
things so that Ops itself “got out of the way,” within a managed and controlled framework of activity.

This is the heart of DevOps, and if it makes your heart skip a beat, then you have to remember
that DevOps is a very different philosophy than what you’ve done before. In the past, QA and
Operations were usually separate teams within IT. Code went from developers to QA and back
again, until QA passed it, and then Operations worked on deploying the code. The intent of having
these “gates” between roles was to make sure nobody did anything they weren’t supposed to, like
deploy unapproved code to production. This created several distinct problems:

• Developers became lazy. They knew QA was checking their work, and so they concentrated
less on producing quality code. QA, in turn, had to take their job more seriously, and so
organizations started investing heavily in QA automation. As a result, the organization spent a
ton of time and money enabling developers to do their jobs less well. This was good for nobody.
Nobody’s saying that testing isn’t important, just that the dev-versus-QA approach hasn’t been
massively beneficial or efficient.

• The organization developed a natural us-versus-them attitude, which is probably how your
organization behaves right now. At the very least, it’s no fun. After all, we’re all supposed to
have the same goal - delivering software and services to users - so we’re supposed to be in it
together. In the worst cases, the inter-departmental rivalry becomes truly toxic, making for an
unpleasant and unproductive workplace.

⁷https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/

https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/
https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/

What Does DevOps Look Like? 7

• Operations made mistakes simply because they didn’t write the code, and developers had little
incentive to write code that was easy to deploy, manage, or monitor. Developers threw the code
“over the wall” and Operations just had to deal with it - increasing the tension between the
departments.

All of this conspired to create something that is essentially the antithesis of DevOps. Software
releases are slower, because of the implacable march of code from development through to QA,
through to production. Operations basically lives in fear of new code, because they know little about
it, and it wasn’t necessarily designed with ease-of-operating in mind. Slower releases meant more
pressure to pack more features into those releases, so each release became a “win,” which simply
made the process even worse.

DevOps, by contrast, envisions application and service delivery than constantly pushes small,
incremental updates to users, with a minimum of operational overhead. Smaller releases are easier
to code and test, and with the right approach, safer to push into production on an ongoing basis. But
in order for all that to happen, everyone has to work together. The hard line between developer and
operations has to become fuzzy.

In a DevOps environment, things work differently. Here’s a super-simplified look: 1. Developers
code, and check their code into a repository. 2. At some point, the repository’s current code is pulled
and built into an application. 3. Tests - usually automated, and created by developers - are run,
including individual models, integration tests, and even user acceptance tests. 4. If the tests succeed,
the build is deployed automatically into production (or at least into some deployment cycle). 5. User
feedback is collected, feeding the next iteration of the cycle. Return to step 1.

Parts of this can be extremely automated, and parts - like user acceptance - may still be done
manually by human beings. The point is that you create as few barriers as possible between coder
and user. That does not mean there are no checkpoints along the way - that’s what testing is all
about, after all - but you don’t put one part of the IT team in charge of “stopping” another part
“from doing something stupid.” DevOps, as a philosophy, implicitly means that you trust your team.
If you don’t trust someone on your team, you have an HR problem, and you should educate them so
that you do trust them, or fire them and replace them with someone you do trust. If your company
“would never let a developer’s code get into production without thirty other people approving it
first,” then you can’t do DevOps. That’s what I was writing earlier about management buy-in being
the first step.

The idea behind DevOps is, as I’ve noted, to smooth the path between coder and user, so that small,
incremental application updates can be pushedmore or less all the time. As user feedback is received,
coders respond and updates are pushed.

Incidentally, here’s a really great explanation of what DevOps is⁸ - and what it isn’t. It’s a long
article, but it’s worth reading, and you’ll notice how much management buy-in is needed for all of
those things to work.

So, for the purposes of this book, we need to look at some of the things needed to make step 4 happen,
and a little bit about what’s needed in step 3 as well. Again, we’re going to focus mainly on processes

⁸http://theagileadmin.com/what-is-devops/

http://theagileadmin.com/what-is-devops/
http://theagileadmin.com/what-is-devops/

What Does DevOps Look Like? 8

and practices; you’ll definitely need some technology to implement those in real life, but the exact
technologies you choose will depend on your specific environment, so we’ll keep this a little more
abstract for right now.

Operational Capabilities of a DevOps
Environment
So what are some of the broad capabilities you need to implement in a DevOps environment?

Automated Environment Creation

First, and possibly foremost, you need the ability to automatically and consistently spin up
environments. That’s a huge deal, and it isn’t easy.

• Automatically: This means enabling a variety of authorized roles within your organization
to start environments on-demand, without involving any human beings. This might be a
developer spinning up a development or test environment, which might be something they
need to do several times a day. It might also be an automated process spinning up an
environment in which to run acceptance tests.

• Consistently: The environments that are spun up must accurately reflect the final production
environment. There are two ways to do that:
– Come up with a method of creating environments, and use that to also create the
production environment as well as whatever other environments are needed. That way,
you know they all match.

– Come up with a method ofmodeling the production environment, and then applying that
model to whatever other environments you spin up.

Emerging configuration management technologies - such as Microsoft’s Desired State Configura-
tion, or products like Chef, Salt, Puppet, and Ansible - are examples of tools that help implement
some of these capabilities. When you can write some kind of configuration document that describes
the environment, and then have a tool that can implement that document wherever and whenever
you want, then you’re getting close to the necessary capability. Containerization is another enabling
technology that can help in this space, since it helps abstract a number of environmental variables,
reducing variation and complexity.

It’s easy to understand why this is such an important capability, though. If you can guarantee that
everyplace an application might run - development, test, or production - is exactly the same, all
the time, then you’re much less likely to run into problems moving the code from environment to
environment. And, by giving other roles - like developers - the ability to spin up these accurate
environments on demand, you help facilitate more real-world testing, and eliminate more problems
during the development phase.

Operational Capabilities of a DevOps Environment 10

I don’t want to downplay the difficulty involved in actually creating this capability, nor do I want
to dismiss the management concerns. Environments take resources to run, and so organizations can
be justifiably concerned about having developers spin up virtual machines willy-nilly. Butwe’re not
talking about unmanaged capability. That’s something that kills me every time I get into a discussion
about DevOps with certain kinds of organizations. “Well, once we give developers permission to spin
up whatever VMs they want, that’s the end of the world!” and they throw up their hands in defeat.
But that’s not what we’re talking about.

The reason DevOps has “Ops” at the end of it is because Operations doesn’t go away. Developers
don’t “take over.” Our job is to provide developers with a managed set of capabilities. So yes, a
developer working on a project should be able to spin up a virtual environment without anyone else’s
intervention, and they should be able to recycle - that is, delete and re-create - that environment
anytime they want. That doesn’t mean they get to change the environment’s specification on their
own, nor does it mean they get free reign of the virtualization infrastructure.

Let me offer you a really simplistic, yet incredibly real-world, example of this. Amazon’s Elastic
Beanstalk service is designed to spin up new environments - that is, virtual machines - more or less
on-demand in response to customer load. Each new virtual machine starts as an identical copy of
a base operating system image, and each new virtual machine can load content - like a web site -
from a GitHUb repository. So right there, you’ve created some of the automation and consistency
you need. With a button push, or in reaction to user load, you can automate the creation of new
environments, and because they all come from known, standard sources, they’ll be consistent.

It’s extremely likely that developers will need environmental changes beyond what’s in the OS base
image, and so developers can specify additional items. They can set environment variables, specify
packages to be downloaded and installed, and so on. In the past, a developer would have tinkered
with their development environment until everything worked, and then hopefully communicated
the results of that tinkering to someone in Operations. Ops would then, hopefully, faithfully re-
create what the developer did. But did you get the right versions of the packages? Did you set all
the environment variables?

In Elastic Beanstalk, though, developers don’t just “tweak” the environment. That’s because every
time a virtual machine shuts down, it vanishes. Any tinkering that was done is gone. On next startup,
it reverts back to that base OS image. So, as part of the project’s source in GitHub, developers
can specify a configuration file that explicitly lists all the extra packages, environment settings,
or whatever. Because that configuration information is part of the GitHub source, every new VM
created by Elastic Beanstalk will be created with those exact same settings, every time.

This is a very DevOps approach, and in this case, Amazon has taken on the role of “Ops.” If a
developer wants to make an environmental change, they modify the project’s source, and then tell
Amazon to recycle the environment. Everything shuts down, and a whole new, fresh environment
spins up. It’s completely documented, so if it works the way the dev wants, then it’ll be perfect
when it’s used for test, production, or anything else. And, in a typical cloud-centric way, Ops -
that is, Amazon - doesn’t have to be manually involved in any way. They’ve created automation
interfaces that let any authorized user spin up whatever they want.

Operational Capabilities of a DevOps Environment 11

As a sidebar, this DevOps idea is a kind of follow-on to the concept of “private cloud.” Private cloud
simplymeans running your private IT resources in a way similar to public cloud providers - meaning
automation on the Operations side. You come up with a way of specifying who can do what, and
then you let them do it on their own. With a public cloud provider, permissions more or less consist
of “whatever you want to pay for,” but in a private cloud situation, permissions can be much more
granular or even completely different. Nobody’s suggesting that you build your own AWS or Azure;
that’s not what private cloud means. But you’ll find that the private cloud capabilities are the very
ones that you need to provide, as an Operations person, to enable a DevOps approach within your
organization.

Development and Test Infrastructure

As I described in the previous chapter, traditional IT management places some pretty firm “gates”
between development, test, and especially operations - with “operations” being more or less
synonymous with “production.” In DevOps, we break that relationship and eliminate the gates.
Operations is responsible for infrastructure, whether that infrastructure supports developers, testing
efforts, or production users. And those different phases of the application lifecycle get much more
tightly integrated. Some of the high-level things you’ll need include:

• Source code repositories. Git is a common example these days, as is Microsoft’s Team
Foundation Server and others. What’s important is that your developers’ tools be tightly
integrated with whatever you’ve chosen. Ideally, these repositories should have, or be capable
of integrating with, some pretty deep coding of their own. For example, the repository should
be able to run pre-defined tests on code before it allows check-ins, and might perform an
automated build-and-test routine each time code is checked in.

• Dashboards. Developers and testers need access to the operational capabilities you’ve provided
them, such as the ability to recycle a virtual development environment. Ideally, you can inte-
grate this as part of their main tool surface, such as an integrated development environment.
Being able to click one button to “compile that, spin up the dev environment, load the compiled
code, and run the app” is pretty powerful. In cases where that level of integration isn’t possible,
then you’ll need to provide some other interface for making some of those activities easy to
perform.

• Testing tools. A certain amount of testing needs to be automated, so that developers can get
immediate feedback, and so that tests can be run as consistently as possible.

That last capability is perhaps one of the most complex. In one ideal approach (although certainly
not the only one, and even this will be a simplified example), the workflow might be something like
this:

1. Developer writes code.
2. Developer runs code in a “private” development environment, performing unit tests.

Operational Capabilities of a DevOps Environment 12

3. Developer repeats steps 1-2 until they’re satisfied with the code, and then checks it into a
repository.

4. Repository runs certain quality checks - which might simply enforce things like coding
conventions - before allowing check-in.

5. If check-in succeeds, repository kicks off an automated build of the code. This is deployed to a
newly-created test environment.

6. Automated testing tools run a number of acceptance tests on the code. This might involve
providing specific inputs to the application and then looking for specific outputs, “hacking”
data into a database to test application response, or so on. Creating these tests is really a coding
effort in and of itself, and it might be completed by the developer working on the code, or by
a dedicated test coder.

7. Test results are stored - often in a part of the source code repository.
8. If tests were successful, then the build is staged for deployment. Deployment might happen

during a scheduled window following that build.

You can see that the human labor here is almost all on developers, which is one reason people refer to
DevOps as a “software development methodology.” But the Ops piece provides all the infrastructure
and automation from step 4 on, enabling a successful build to move directly to production.

Obviously, different organizations will have different takes on this. Some might mandate user ac-
ceptance testing as an additional manual step, although Ops could help automate that. For example,
after step 7 above, youmight automate the creation of a user acceptance testing environment, deploy
the code to that environment, and then notify someone that it’s ready for testing. Their acceptance
might trigger the stage-for-production step, or their rejection might feed back to the developer to
begin again at step 1.

The point is that Operations needs to provide the automation so that this sequence runs with
as little unnecessary manual intervention as possible. Certainly, Ops should never be acting as
a gatekeeper. We’re not code testers. If the code passed whatever quality checkpoints have been
defined, then the code’s ready to deploy, and we should handle as much of that automatically as
possible. Even the deployment - once approved, and on whatever schedule we’ve defined - should
happen automatically.

You can see that DevOps, as an abstract philosophy, actually requires a lot of concrete tooling. And
you can perhaps see that, because organizations will all have different particulars about how they
want to manage the process, it would be difficult for commercial vendors to produce that tooling.
There’s not really a “one size fits all” approach for DevOps, which means Operations will end up
creating a lot of it’s own tooling. That’s where platform technologies come into play. They can
provide a set of building blocks that make it easier to create those custom DevOps tools you’ll need.

End-User Experience Monitoring

This is perhaps the most important part of a DevOps organization, and it’s the easiest to overlook.

Operational Capabilities of a DevOps Environment 13

As an IT Ops person, you’re probably already pretty familiar with monitoring, and make no mistake:
it’s just as important under DevOps as it was before DevOps. Monitoring not only to notify someone
when something goes wrong, but also monitoring to help profile applications (and their supporting
services and infrastructure), so you can proactively address problems before they become severe.

But IT Ops’ definition of “monitoring” often isn’t as inclusive as it should be. We tend to only
monitoring the things that are directly under our control. We monitor network usage, processor
load, and disk space. We monitor network latency, service response times, and server health. We
monitor these things because we can affect these things.

One of the biggest collaborations a DevOps organization can have, however, is monitoring the end
user experience. It’s something we, as IT people, can’t directly touch, but if the whole point of IT is to
deliver apps and services to users (and yes, that is the whole point), then the end-user experience of
those apps and services is quite literally the only metric that matters. Why do we measure network
latency? Because it contributes to the user experience. Why do we measure service response time?
User experience. We attempt to indirectly measure the end-user experience, because we’ve often no
way of directly measuring it.

DevOps’ philosophy of developers and operations collaborating comes to a pinnacle with end-user
experience monitoring. Developers should build applications with the ability to track the end-user
experience. For example, when some common operation is about to begin, the application should
track the start time, and then track the end time. Any major steps in between should receive a
timestamp, too, and that information should be logged someplace. In Operations, we need to provide
a place for that log - that performance artifact - to live, and we need to provide a way for developers
to access it. We need to baseline what “normal” performance looks like, and monitor to track for
declines in that baseline. Operations may be responsible for the monitoring itself, but developers, in
their code, can give us the instrumentation to monitor what matters most.

If end-user experience numbers begin to decline - say, the time it takes to perform a common
query and display the results starts to get longer and longer - then we can dig into more detailed
instrumentation and see if we can find the cause. Is it network latency? Server response time? Any
other correlations that might point to a cause? But by directly measuringwhat our users experience,
we have an unassailable top-level metric that represents the most real-world thing we can possibly
have on the radar.

I’m making a big deal of end-user experience monitoring not only because it’s important and useful,
but also because it’s one of the easiest-to-grasp examples of what DevOps is all about. Developers
have traditionally cared about users’ experience (in theory), but they’re extremely disconnected
from it. Operations is very connected to what users experience (we get the Help Desk calls, after
all), but we’re relatively powerless to put our fingers directly on it. Through the collaboration that
drives DevOps philosophy, though, developers and operations personnel can come together to do
their collective job better.

IT Ops Skills in a DevOps Environment
So let’s say you’ve decided, at least in theory, to help take your organization onto a DevOps standing.
You’ve read about some of the high-level capabilities that you, as an Operations person, need to
provide to the organization.

How do you do it?

In a word, “glue.”

I’ll say it again: DevOps is a philosophy. Accounting remains a good example. The accounting
industry agrees, more or less, on what constitutes good accounting, and that’s where GAAP comes
from. Similarly, the DevOps industry is slowly coalescing a feeling of what “good” DevOps “feels
like.”

But every organization does it their own way. Look at how any one organization handles their
accounting, in detail, and you’ll see plenty of differences between other organizations. Perhaps
auditors work a little differently, or perhaps a different job role is responsible for different accounting
duties. Some companies need fairly simplistic accounting, whereas others need incredibly complex
accounting that demands hundreds of people working around the clock. Although they’re all
operating on the same principles, their implementations vary widely.

So it is with DevOps.

In a small organization, accounting may be simple enough that off-the-shelf tools, like Quickbooks,
are sufficient. In that size of an organization, DevOps might not even be a thing, because a company
of that size might simply not be doing any “dev” to begin with. In a massive, multi-departmental
enterprise, accounting might involve “off-the-shelf” tools that requires months and months of
customization and tweaking. Similarly, DevOps in that same organization might involve customized
tooling that uses generic building blocks… and a lot of custom glue.

Providing the operational infrastructure for a DevOps organization can be hacking at its finest. Yes,
you’ll find plenty of off-the-shelf technologies and products… but many of them will only get you to
a certain point in your organization’s goals. After that, it’ll be a bit of customizing, a bit of “gluing”
different tools together, and a bit of hacking around the rough edges. That will probably always be
the case, just as it’s still the case that large new deployments of accounting tools always take months
and months. Nothing off-the-shelf can possibly fit every organization’s needs, so you’ll simply have
to be prepared to do some customizing. Some hacking. Some gluing.

With that in mind, what are the right skills to have?

• The ability to learn quickly. You’ll have to master new products and technologies on the fly.
• Creativity. You’ll need to think of clever solutions to work around stumbling blocks. Don’t
expect everything to “just work” - it won’t.

IT Ops Skills in a DevOps Environment 15

• Deep understanding of your platform(s). Whether you’re working on Microsoft Windows, a
Linux distribution, or some other platform, you need to know deeply how it works, because
you’re going to be interacting with it in the sub-basement level.

• Scripting. You’re going to need to be fluent in the leading systems programming (“scripting”)
language(s) used on your platform, because that’s the “glue” you’ll use to stick different
technologies together into a cohesive, custom solution.

This DevOps stuff is not for beginners, nor is it for the faint of heart. This is, in my own personal
belief, why companies create job titles like “DevOps Engineer.” Most of the DevOps community quite
justifiably freaks out about job titles like that, because they’re often a demonstration that someone
in the organization doesn’t get it. DevOps isn’t a job role. However, in an organization practicing
DevOps, there certainly are some skills that will come in handy, especially on the Operations side.
Someone possessing those skills might justifiably be called a “DevOps Engineer,” which is perhaps
less cumbersome than “IT person who knows enough to make all these bits stick together so we can
get the DevOps-enabling capabilities we need.” That’d be a big business card. “DevOps Engineer”
is probably also a title less demeaning to one’s co-workers than “Cleverest IT Person We’ve Got,”
which is also usually the case.

IT Ops folks working to provide DevOps-compatible capabilities are often the more experienced,
cleverer folks on the team. They often have the broadest experience and knowledge, and they’re
often the ones most eager to tackle a challenge.

By the way, notice how I phrased that. “…working to provide DevOps-compatible capabilities…” was
a very deliberate phrase. A DevOps-practicing organization does need specific capabilities, and the
Operations side provides some of them, in close collaboration with the Dev side. That doesn’t mean
you have a “DevOps Department,” because that misses the point. “DevOps Engineer” as a job title is
only legit if it means “Engineer Who Helps Provide Our DevOps-Related Capabilities.” DevOps isn’t
something you do; it’s something you believe, which in turn drives you to do things. If you believe
in DevOps, your organization needs to behave in a certain way, and it needs certain tools to support
those behaviors.

There are new Development skills that need to be brought into a DevOps environment, too.
Developers have to focus more on building code that can be deployed, monitored, and managed
in a DevOps-centric way. For example, in most Windows-centric environments, developers would
often use the tools bundled into Visual Studio to create Windows Installer packages for applications.
Those packages weren’t always easy to deploy in an automated fashion, may have required (or
thought they required) Administrator privileges, and other elements that simply made deploying
the code difficult and even dangerous. To “do” DevOps, that has to change. Operations needs to
give Development the ability to seamlessly slide code into production - but Development needs to
write code that supports that model. The burden is on both groups, as a combined team, not just on
Operations to make things simpler.

IT Ops Skills in a DevOps Environment 16

Plan for Failure

“Wait a damn minute,” I can hear you saying, “sliding new code into production is what
causes all the problems!”

Agreed. Any kind of change has the potential to create problems. The point of DevOps - and most
particularly the Operations role in DevOps - is to create an environment where you can fail quickly,
and fix just as quickly (thanks to Chris Hunt for that). If DevOps means constantly pushing out
small bits of code, then you have to be prepared to - in Facebook’s language - “move fast and break
things.” Eventually some release is going to be problematic, and so the role of Operations is not to
slow things down to avoid the problem but rather to hit the problem hard and fast. Virtualization, as
one example, gives us the ability to rapidly “roll back” entire operating environments to a “known
good state,” making the prospect of failure a little less frightening. Plan for failure, rather than trying
to avoid failure entirely.

Ask yourself if you’re the type of person who routinely plans for failure. For example, on every
airline flight I take, I have a set of spare clothes in my carry-on, even if that’s just my computer bag.
I have a small stick of deodorant, because that’s an item not included in airlines’ amenity packs. I
assume there will be a failure in the trip, and I have simple plans in place to mitigate that failure. Few
people take these simple steps, though, and so when failure eventually does happen, they become
angry, stressed, and uncomfortable - even when the causes of failure are completely outside human
control, like weather. I plan longer layovers than most people - usually 2 hours domestically - and
am often able to avoid a trip failure because of that extra margin.

In a DevOps environment, you have to accept that failure will occur. Your effort should go less into
preventing that failure - especially through time-consuming “gates” that put a wall between coders
and users - and instead put effort into being able to iterate and recovery quickly. In a true DevOps
team, a buggy release doesn’t mean you roll back to the last one - it means you release another one
really quickly. That’s moving forward, not rolling back, and having the capability to do that is the
main hallmark of a DevOps-ready organization.

Operations as Development
There’s an interesting piece of fallout to having an Operations team get more DevOps-supportive,
and it’s that the Operations team becomes a kind of special-purpose Development team. This fallout,
in fact, creates one of the biggest misunderstandings about DevOps: the believe that DevOps means
“Operations turning into coders.”

DevOps does notmean Operations turning into coders. Itmeans Operations working to smooth the
path between coder and user. It turns out that the most common way for Operations to do that is
by providing automation, and the most common way to provide automation usually involves some
coding. So DevOps usually results in Operations turning into coders, at least to some degree.

Most operating systems that Operations will deal with have some systems programming-level
language that’s designed to facilitate operational automation. In Linux, for example, Perl and Python
are extremely common scripting languages. In Microsoft Windows, Windows PowerShell has taken
on that role. So this isn’t programming a la C++, C#, or another “deep” programming language; it’s
“scripting,” usually in a higher-level language that’s more purpose-built for the task of operational
automation. As I noted in the previous chapter, the main skill that Operations needs to bring to the
DevOps picnic is skill in an environment-appropriate scripting language.

But once Operations begins producing units of automation - that is, code - Operations itself needs
to start acting like a DevOps shop. Those units of automation are the application that the coder
(Ops) delivers to the user (in this case, other roles in the IT team). So Operations needs the tools and
management approaches that let them quickly iterate their code, test it, and deliver it to production.
As users (in this case, that’s probably developers) define new needs (such as the ability to deploy
code to end-users), Operations must deliver.

This entire concept is often one of the biggest obstacles to organization-wide DevOps mentality,
especially in shops that are heavily built on Microsoft Windows. The hurdle happens because
Windows administrators, in general, haven’t had decades of investment in coding and automation,
in large part because the OS only started offering the capability in 2006, and didn’t offer a significant
capability until 2012. Administrators in the space simply haven’t had the tools, and so they haven’t
learned the techniques. Change is always scary for some people (and for some organizations), and so
the change of switching from GUI-based administration (which doesn’t support DevOps) to code-
based administration (which does), can be scary.

Many administrators - again, the Windows space perhaps has this the most - are accustomed to
getting fully-fledged tools for administering their environments. They’ll maybe complain that the
tools don’t work quite the way they want them to, but they’re close enough. Moving into a DevOps-
centric world, though, simply introduces too many variables. What kind of code are you delivering?
What methodology do your developers use? What are the production concerns around stability and
availability? How much room is there for error? What sort of maintenance windows are available?

Operations as Development 18

How do you communicate with the user base? The sheer number of variables means that pretty
much every organization is unique, which means off-the-shelf tools simply can’t be produced that
are “close enough.” As a result, DevOps almost demands that Operations build its own tools and
processes, usually by “gluing” together off-the-shelf platform technologies. That’s what I covered in
the previous chapter, albeit from a slightly different perspective.

That “gluing” process is where Operations strays into its own development. You might be using
Microsoft SystemCenter VirtualMachineManager tomanage your virtual infrastructure - but you’ll
be writing some code to make it do what you want in accordance with your particular processes.
You might use Chef to handle declarative configuration of virtual machine environments - but you’ll
be writing some code to tell Chef exactly what it is you want, and to manage custom elements that
exist only in your environment.

Another result of this DevOps approach is that, once you get really good at it, you start to treat
your infrastructure as code, and you start approaching infrastructure management in a more agile
(if not Agile) manner. Virtualization in particular has made this tremendously easy, because we
can tear down and re-create entire massive environments with the push of a button. Don’t like the
current environment configuration? No problem - modify the declarative configuration document
and recycle the environment. Not happy with the result? Repeat. Reconfiguring the environment
can (and should) be as easy as modifying a code-like structure, just as modifying an application
is as easy as changing the code. In other words, once you’re using code, or something like it, to
describe how your environment should look, then you’re basically treating the infrastructure as
code. Development methodologies like Agile and Lean start to become an option for managing the
infrastructure… and suddenly, you’re looking a lot more DevOps-ish.

Mind-melding completely with all of these concepts - infrastructure as code, Operations as glue-
coders - really opens up some possibilities. You’re no longer constrained to this “big vendor”
approach, where you have to find one vendor stack that meets all of your needs (which was never
really practical anyway). Instead, you become comfortable dragging in components from multiple
vendors as needed, because you grow confident in your ability to glue them all together into the
Fraken-structure you need.

DevOps Doesn’t Exclude Anyone
Because… well, because it’s called Dev Ops, there’s often this feeling that the philosophy excludes
security… or network infrastructure… or graphics designers… or someone.

It doesn’t.

If DevOps means any one thing, it means everyone collaborating. But what it doesn’t mean is
someone having a veto. For example, IT Security can’t swoop in and say, “there’s no way we can
automate the deployment of that app Because Security.” That’s not collaboration, it’s obstructionism.
What they can say is, “in order to automate the deployment of that particular app, we need to make
sure x and y are happening.” Security, Development, and Operations can work together to automate
those requirements, helping ensure they’re carried out consistently every single time. Security wins
because their concerns get met as a part of the process. Development wins because they get better
insight into Security concerns. Operations wins because they get to stop being the middleman who
has to reconcile everyone’s crap.

But this is why DevOps cannot work without management buy-in from a very high level. Like, the
CEO and CIO (or CTO). The bits of your company that have traditionally worked in their own little
fiefdoms need to give up their royal styles and work together. “No” is never the answer; it’s “here’s
how.” That, as I’m sure you can imagine, can bemassively difficult, politically, in some organizations.
And that is where people fail at DevOps.

A DevOps Reading List
Many thanks to Chris Hunt (@cdhunt on Twitter) for providing this suggested reading list.

The Phoenix Project by Gene Kim
The Goal by Eliyahu M. Goldratt
It’s Not Luck by Eliyahu M. Goldratt
The Checklist Manifesto by Atul Gawande
Thinking in Systems: A Primer by Donella H. Meadows
Lean Enterprise: How High Performance Organizations Innovate at Scale by Jez Humble
Becoming a Technical Leader: An Organic Problem-Solving Approach by Gerald M. Weinberg
Theories of Work: How We Design and Manage Work⁹ by David Joyce
Quiet: The Power of Introverts in a World That Can’t Stop Talking by Susan Cain
Continuous Delivery by Jez Humble and David Farley
Test Driven Development by Kent Beck

⁹http://www.theoriesofwork.com/

http://www.theoriesofwork.com/
http://www.theoriesofwork.com/

	Table of Contents
	DevOps: The Ops Perspective
	What is DevOps?
	Some Background
	DevOps, for Ops
	It's a Philosophy
	It's an Approach
	There's No Such Thing as a DevOps Team
	What DevOps Isn't

	What Does DevOps Look Like?
	Operational Capabilities of a DevOps Environment
	Automated Environment Creation
	Development and Test Infrastructure
	End-User Experience Monitoring

	IT Ops Skills in a DevOps Environment
	Plan for Failure

	Operations as Development
	DevOps Doesn't Exclude Anyone
	A DevOps Reading List

