

The Big Book of PowerShell Gotchas

The DevOps Collective, Inc.

This book is for sale at http://leanpub.com/thebigbookofpowershellgotchas

This version was published on 2018-10-28

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2018 The DevOps Collective, Inc.

http://leanpub.com/thebigbookofpowershellgotchas
http://leanpub.com/
http://leanpub.com/manifesto

Also By The DevOps Collective, Inc.
Creating HTML Reports in Windows PowerShell

A Unix Person’s Guide to PowerShell

The Big Book of PowerShell Error Handling

DevOps: The Ops Perspective

Ditch Excel: Making Historical and Trend Reports in PowerShell

Secrets of PowerShell Remoting

The Monad Manifesto, Annotated

Why PowerShell?

Windows PowerShell Networking Guide

The PowerShell + DevOps Global Summit Manual for Summiteers

Why PowerShell? (Spanish)

Secrets of PowerShell Remoting (Spanish)

DevOps: The Ops Perspective (Spanish)

The Monad Manifesto: Annotated (Spanish)

Creating HTML Reports in PowerShell (Spanish)

The Big Book of PowerShell Gotchas (Spanish)

The Big Book of PowerShell Error Handling (Spanish)

DevOps: WTF?

PowerShell.org: History of a Community

http://leanpub.com/u/devopscollective
http://leanpub.com/creatinghtmlreportsinwindowspowershell
http://leanpub.com/aunixpersonsguidetopowershell
http://leanpub.com/thebigbookofpowershellerrorhandling
http://leanpub.com/devopstheopsperspective
http://leanpub.com/ditchexcelmakinghistoricalandtrendreportsinpowershell
http://leanpub.com/secretsofpowershellremoting
http://leanpub.com/themonadmanifestoannotated
http://leanpub.com/whypowershell
http://leanpub.com/windowspowershellnetworkingguide
http://leanpub.com/summiteermanual
http://leanpub.com/why-powershell-spanish
http://leanpub.com/secrets-of-powershell-remoting-spanish
http://leanpub.com/devops-the-ops-perspective-spanish
http://leanpub.com/monad-manifesto-annotated-spanish
http://leanpub.com/creating-html-reports-in-powershell-spanish
http://leanpub.com/big-book-of-powershell-gotchas-spanish
http://leanpub.com/big-book-of-powershell-error-handling-spanish
http://leanpub.com/devopswtf
http://leanpub.com/powershellorghistoryofacommunity

Contents

The Big Book of PowerShell Gotchas . 1

Format right . 2

Where is the ____ Command? Iâ€™ve Installed the Latest Version of PowerShell and
Canâ€™t Find it! . 5

PowerShell.exe isnâ€™t PowerShell . 6

Accumulating Output in a Function . 7

ForEach vs ForEach vs ForEach . 9

Tab Completion . 11

-Contains isnâ€™t -Like . 12

You Canâ€™t Have What You Donâ€™t Have . 16

-Filter Values Diversity . 19

Not Everything Produces Output . 21

One HTML Page at a Time, Please . 23

[Bloody . 25

Donâ€™t+Concatenate+Strings . 27

$ isnâ€™t Part of the Variable Name . 29

Use the Pipeline, not an Array . 31

Backtick, Grave Accent, Escape . 33

A Crowd isnâ€™t an Individual . 36

These arenâ€™t Your Fatherâ€™s Commands . 38

CONTENTS

Properties vs. Values . 39

Remote Variables . 40

New-Object PSObject vs. PSCustomObject . 42
New-Object PSObject in v1.0 . 42
New-Object in PS 2.0 . 43
PSCustomObject in PowerShell v3.0 . 43

Running Something as the “Currently Logged-in User” . 45

Commands that Need a User Profile May Fail When Run Remotely 46

Writing to SQL Server . 47

Getting Folder Sizes . 49

The Big Book of PowerShell Gotchas
by (mostly) Don Jones

PowerShell is full of “gotchas” - little things that just get in your way and are hard to figure out on
your own. This short book is intended to help you figure them out and avoid them.

This guide is released under the Creative Commons Attribution-NoDerivs 3.0 Unported License. The
authors encourage you to redistribute this file as widely as possible, but ask that you do not modify
the document.

Getting the Code The EnhancedHTML2 module mentioned in this book can be found in the
https://www.powershellgallery.com/packages/EnhancedHTML2/¹. That page includes download
instructions. PowerShellGet is required, and can be obtained from PowerShellGallery.com

Was this book helpful? The author(s) kindly ask(s) that you make a tax-deductible (in the US; check
your laws if you live elsewhere) donation of any amount to The DevOps Collective² to support their
ongoing work.

Check for Updates! Our ebooks are often updated with new and corrected content. We make them
available in two ways:

• Ourmain, authoritativeGitHub organization³, with a repo for each book. Visit https://github.com/devops-
collective-inc/

• On LeanPub⁴, where you can read them online, download as PDF, EPUB, or MOBI (login
required), and “purchase” the books to make a donation to DevOps Collective. You can also
choose to be notified of updates. Visit https://leanpub.com/u/devopscollective

LeanPub can also notify you when we push updates. Our main GitHub repo is authoritative;
repositories on other sites are usually just mirrors used for the publishing process. LeanPub always
contains the most recent “public release” of any book.

¹PowerShellGallery
²https://devopscollective.org/donate/
³https://github.com/devops-collective-inc
⁴https://leanpub.com/u/devopscollective

https://devopscollective.org/donate/
https://github.com/devops-collective-inc
https://leanpub.com/u/devopscollective
https://devopscollective.org/donate/
https://github.com/devops-collective-inc
https://leanpub.com/u/devopscollective

Format right
Everyone runs into this one. Here’s how it goes: you start by writing a truly awesome command.

image005.png

And you think, “wow, that’d go great in an HTML file.”

Format right 3

image007.png

Wait… what?!?!?

This happens all the time. If you want an easy way to remember what not to do, it’s this: Never pipe
a Format command to anything else. That isn’t the whole truth, and we’ll get to the whole truth in
a sec, but if you just want a quick answer, that’s it. In the community, we call it the “Format Right”
rule, because you have to move your Format command to the right-most end of the command line.
That is, the Format command comes last, and nothing else comes after it.

The reason is that the Format commands all produce special internal formatting codes, that are really
just intended to create an on-screen display. Piping those codes to anything else - ConvertTo-HTML,
Export-CSV, whatever - just gets you gibberish output.

In fact, there are actually a few commands that can come after a Format command in the pipeline:

1. Out-Default. This is technically always at the end of the pipeline, although it’s invisible. It
redirects to Out-Host.

2. Out-Host also understands the output of Format commands, because Out-Host is how those
formatting codes get on the screen in the first place.

3. Out-Printer understands the formatting codes too, and constructs a printed page that would
look exactly like the normal on-screen output.

4. Out-File, like Out-Printer, redirects the on-screen output, but this time to a text file on disk.

Format right 4

5. Out-String consumes the formatting codes and just outputs a plain string containing the text
that would otherwise have appeared on-screen.

Apart from those exceptions - and of them, you’ll mainly only ever use Out-File - you can’t pipe the
output of a Format command to much else and get anything that looks useful.

Where is the ____ Command? Iâ€™ve
Installed the Latest Version of
PowerShell and Canâ€™t Find it!
One tricky thing is understanding that there are a certain number of commands that come with
PowerShell, _while _most commands do not.

Every new version of PowerShell includes at least a few new commands. For example, Start-
Job appeared for the first time in PowerShell v2, while Invoke-AsWorkflow was introduced in
PowerShell v3.

What confuses people is that a new version of PowerShell also tends to correspond with a new
version of the Windows operating system? and the OS itself comes with hundreds of commands.
For example, you may have used Get-SmbShare for the first time in Windows Server 2012, which
included PowerShell v3. But Get-SmbShare is part of the operating system, not part of PowerShell.
That is, you won’t have Get-SmbShare on every system that has PowerShell v3 or later, because the
command isn’t a “feature of PowerShell,” it’s a “feature of Windows.”

So? where do you get commands?

Usually, with whatever product those commands are a part of. Want the Exchange Server com-
mands? Install the Exchange Server admin tools. Want the Windows Server 2012 commands? Install
the Remote Server Administration Toolkit (RSAT), which contains the server admin tools.

PowerShell.exe isnâ€™t PowerShell
Itâ€™s important to understand that Windows PowerShell is actually an untouchable, behind-the-
scenes engine. You as a mere human being cannot easily interact directly with PowerShell.

Instead, you need a host application. A host embeds the engine internally, and then gives you a way
to interact with it. For example, PowerShell.exe is a host application. It is built around the same
Windows console host (ConHost.exe) as the old Cmd.exe command-line shell, but it embeds the
PowerShell engine. You type commands, and the host hands those to the engine for execution. The
host is also responsible for displaying any results ? in this case, on-screen.

Why is this distinction important?

Because different hosts can behave in different ways. For example, the PowerShell ISE behaves a bit
differently than the console host, and both of them behave very differently from Active Directory
Administration Center ? another PowerShell host.

Accumulating Output in a Function
This is a bit of an “advanced” gotcha, but it’s one that many experienced developers will run into.
Here’s a very trimmed-down example, just to make the point (it isn’t functional, as the command
used is fictional):

image009.png

The problem here is that the function can generate multiple output objects, and the programmer
is accumulating those into the $output variable. That means this function won’t output anything
until it’s completely finished running. That isn’t how PowerShell commands (and functions are
commands) are usually meant to work.

PowerShell commands should usually output each object to the pipeline, one at a time, as those
objects are ready. That allows the pipeline to accumulate the output, and to immediately pass it
along to whatever is next in the pipeline. That’s how PowerShell commands are intended to work.
Now, there are always exceptions. Sort-Object, for example, has to accumulate its output, because it
can’t actually sort anything until it has all of them. So it’s called a _blocking command, _because it
“blocks” the pipeline from doing anything else until it produces its output. But that’s an exception.

It’s usually easy to fix this, by simply outputting to the pipeline instead of accumulating:

Accumulating Output in a Function 8

image011.png

ForEach vs ForEach vs ForEach
PowerShell’s three lookalike friends can confusing, especially for newcomers. Basically, you’ve got
two entities:

• The ForEach-Object cmdlet, which has an alias ForEach (it also has the alias %). This is meant
to operate in the pipeline, and it uses a ?Process parameter that accepts a scriptblock.

• The ForEach scripting construct. This has a specific syntax, is not intended to be used in the
pipeline, and does not have an alias.

Here’s all three in action, in a very simplistic example:

image013.png

The big difference is that, in the pipeline, ForEach-Object _processes one object at a time. _That
means it can be slower, since that scriptblock must be interpreted on each iteration. It also tends
to use less memory, since objects streaming down the pipeline one at a time don’t all have to be
bunched up in a variable first.

The scripting construct tends to be faster, but it often has more memory overhead, because you have
to give it the entire collection of objects at once, instead of streaming objects into it one at a time.

ForEach vs ForEach vs ForEach 10

Both use vaguely similar syntax, but there are differences. It’s important to understand that they
are not the same, and that they execute differently. It’s confusing because “ForEach” is both an
alias and a scripting construct; the shell determines which you’re using by looking at the context in
which you’re using it.

Tab Completion
It’s sad and amazing how few people rely on tab completion, both in the PowerShell ISE and in the
console window.

• When you tab complete, you’ll never spell commands or parameter names wrong
• Formany parameter values that are static lists, or easily-queried lists, tab completion (especially
in v3 and later) can fill-in legal parameter values for you

• Tab completion makes long cmdlet names a lot easier to type, without the need for difficult-
to-remember aliases.

Get into the habit of using tab completion all the time, and you’re guaranteed to make fewer
mistakes.

-Contains isnâ€™t -Like
Oh, if I had a nickel for every time I’ve seen this:

image015.png

I get how this happens. The -contains operator seems like it should be checking to see if a process’
name contains the letters “notepad.” But that isn’t what it does.

The correct approach is to use the -like operator, which in fact does do a wildcard string comparison:

-Contains isnâ€™t -Like 13

image017.png

I’ll let pass the thought that the really correct answer is to just run Stop-Process -name *notepad*,
because I was aiming for a simple example here. But… don’t overthink things. Sometimes a script
and a ForEach loop isn’t the best approach.

So anyway, what does -contains (and its friend, -notcontains) actually do? They’re similar to the
-in and -notin operators introduced in PowerShell v3, and those operators cause more than a bit of
confusion, too. What they do is check to see if a collection of objects contains a given single object.
For example:

-Contains isnâ€™t -Like 14

image019.png

In fact, that example is probably the best way to see it work. The trick is that, when you use a
complex object instead of a simple value (as I did in that example), -contains and -in look at every
property of the object to make a match. If you think about something like a process, they’re always
changing. From moment to moment, a process’ CPU and memory, for example, are different.

-Contains isnâ€™t -Like 15

image021.png

In this example, I’ve started Notepad. I’ve put its process object into $single_proc, and you can see
that I verified it was there. But when I run Get-Process and check to see if its collection contained
my Notepad, I got False. That’s because the object in $single_proc is out of date. Notepad is running,
but it now looks different, so -contains can’t find the match.

The -in and -contains operators are best with simple values, or with objects that don’t have
constantly-changing property values. But they’re not wild card string matching operators. Use -like
(or -notlike) for that.

You Canâ€™t Have What You Donâ€™t
Have
Can you see what’s wrong with this approach?

image023.png

I mean, I’m pretty sure I have some running services, which is what this was supposed to display.

If you don’t see the answer right away - or frankly, even if you do - this is a good time to talk about
how to troubleshoot long command lines. Start, as I always say, by backing off a step. Delete the last
command, and see if that does anything different.

You Canâ€™t Have What You Donâ€™t Have 17

image025.png

In this case, I removed the Sort-Object (Sort) command, and nothing different happened. So that
wasn’t causing the problem. Next, I removed the Where-Object (Where, using v3 short syntax)
command, and ah-ha! I got output. So something broke with Where-Object. Let’s take what did
work and pipe it to Get-Member, to see what’s in the pipeline after Select-Object runs.

You Canâ€™t Have What You Donâ€™t Have 18

image027.png

OK, I have an object that has a DisplayName property and a Name property.

And my Where-Object command was checking the Status property. Do you see a Status property?
No, you do not. My error is that I removed the Status property when I didn’t include it in the property
list of Select-Object. So Where-Object had nothing to work with, so it returned nothing.

(Yeah, it’d be cooler if it threw an error - “Hey, you said to filter on the Status property, and there
ain’t one!” - but that isn’t how it works.)

Moral of the story: Pay attention to what’s in the pipeline. You can’t work with something you don’t
have, and you might have taken it away yourself. You won’t always get a helpful error message, so
sometimes you’ll need to dig in and figure it out another way - such as backing off a step.

-Filter Values Diversity
Here’s one of the toughest things to get used to in PowerShell:

image029.png

Here you see three commands, each using a -Filter parameter. Every one of those filters is different.

1. With Get-ChildItem, -Filter accepts file system wildcards like *.
2. With Get-WmiObject, -Filter requires a string, and uses programming-style operators (like =

for equality).
3. With Get-ADUser, -Filter wanted a script block, and accepted PowerShell-style comparison

operators (like -eq for equality).

Here’s how I think of it: When you use a -Filter parameter, PowerShell isn’t processing the filtering.
Instead, the filtration criteria is being handed down to the underlying technology, like the file
system, or WMI, or Active Directory. That technology gets to decide what kind of filter criteria
it will accept. PowerShell is just the middleman. So you have to carefully read the help, and maybe
look for examples, to understand how the underlying technology needs you to specify its filter.

-Filter Values Diversity 20

Yeah, it’d be nice if PowerShell just translated for you (that’s actually what Get-ADUser does - the
command translates that into an LDAP filter under the hood). But, usually, it doesn’t.

Not Everything Produces Output
I see this one a lot in classes:

image031.png

If you expected anything on the screen in terms of output, you’d be disappointed. The trick here
is to keep track of what each command produces as output, and right there is a possible point of
confusion.

In PowerShell’s world, output is what would show up on the screen if you ran the command and
didn’t pipe it to anything else. Yes, Export-CSV does do something - it creates a file on disk - but in
PowerShell’s world that file isn’t output. What Export-CSV does not do is produce any output - that
is, something which would show up on the screen. For example:

Not Everything Produces Output 22

image033.png

See? Nothing. Since there’s nothing on the screen, there’s nothing in the pipeline. You can’t pipe
Export-CSV to another command, because there’s nothing to pipe.

Some commands will include a -PassThru parameter. When they have one, and when you use it,
they’ll do whatever they normally do but also pass their input objects through to the pipeline, so
that you can then pipe them on to something else. Export-CSV isn’t one of those commands, though
- it never produces output, so it will never make sense to pipe it to something else.

image035.png

One HTML Page at a Time, Please
This drives me batty:

image037.png

What’s happening is that someone ran two command, piping the output of each to ConvertTo-
HTML, and essentially sticking both HTML pages into a single file. What drives me really nuts is
that Internet Explorer is okay with that nonsense.

HTML files are allowed to start with one top-level <HTML> tag, but if you check out that file you’ll
see that it contains two. Here’s the middle bit:

One HTML Page at a Time, Please 24

image039.png

I’ve highlighted the lines that end one HTML page and start the next one. This is technically a
malformed HTML file. It becomes tough to use this with some Web browsers (Firefox 20 is choking
it down, but my current Webkit browsers aren’t), tough to parse if you ever need to manipulate it
programmatically, and… well, it’s just a bad thing. It’s like incest or something. Gross.

If you need to combine multiple elements into a single HTML file, you use the -Fragment switch
of ConvertTo-HTML. That produces just a portion of the HTML, and you can produce several such
portions and then combine them into a single, complete page. Ahhh, nice. That whole process is
covered in Creating HTML Reports in PowerShell, another free ebook that came with this one

{
Awful} (Punctuation)][Bloody] {Awful} (Punctuation)

This isn’t so much a “gotcha” as it is just plain confusing. PowerShell’s nuts with the punctuation.

image041.png

(Parentheses) are used to enclose expressions, such as the ForEach() construct’s expression, and in
certain cases to contain declarative syntax. You see that in the Param() block, and in the [Parameter()]
attribute.

[Bloody 26

[Square brackets] are used around some attributes, like [CmdletBinding()], and around data types
like [string], and to indicate arrays - as in [string[]]. They pop up a few other places, too.

{Curly brackets} nearly always contain executable code, as in the Try{} block, the BEGIN{} block,
and the function itself. It’s also used to express hash table literals (like @{}).

If your keyboard had a few dozen more buttons, PowerShell probably wouldn’t have had to have
all these overlapping uses of punctuation. But it does. At this point, they’re pretty much just part of
the shell’s “cost of entry,” and you’ll have to get used to them.

Donâ€™t+Concatenate+Strings
I really dislike string concatenation. It’s like forcing someone to cuddle with someone they don’t
even know. Rude.

image043.png

And completely unnecessary, when you use double quotes.

image045.png

Same end effect. In double quotes, PowerShell will look for the $ character. When it finds it:

1. If the next character is a { then PowerShell will take everything to the matching } as a variable
name, and replace the whole thing with that variable’s contents. For example, putting ${my
variable} inside double quotes will replace that with the contents of ${my variable}.

2. If the next character is a (then PowerShell will take everything to the matching) and execute
it as code. So, I executed $wmi.serialnumber to access the serialnumber property of whatever
object was in the $wmi variable.

3. Otherwise, PowerShell will take every character that is legal for a variable name, up until the
first illegal variable name character, and replace it with that variable. That’s how $computer

Donâ€™t+Concatenate+Strings 28

works in my example. The space after r isn’t legal for a variable name, so PowerShell knows
the variable name stops at r.

There’s a sub-gotcha here:

image047.png

This won’t work as expected. In most cases, $wmi will be replaced by an object type name,
and .serialnumber will still be in there. That’s because . isn’t a legal variable name character, so
PowerShell stops looking at the variable with the letter i. It replaces $wmi with its contents. You see,
in the previous example, I’d put $($wmi.serialnumber), which is a subexpression, and which works.
The parentheses make their contents execute as code.

$ isnâ€™t Part of the Variable Name
Big gotcha.

image049.png

Can you predict what happened?

image051.png

You see, the $ is not part of the variable’s name. If you have a variable named example, that’s like
having a box with “example” written on the side. Referring to example means you’re talking about
the box itself. Referring to $example means you’re messing with the contents of the box.

So in my example, I used $example=5 to put 5 into the box. I then created a new variable. The new
variable’s name was $example - that isn’t naming it “example,” it’s naming it the contents of the
“example” box, which is 5. So I create a variable named 5, that contains 6, which you can see by
referring to $5.

Tricky, right? Comes up all the time:

$ isnâ€™t Part of the Variable Name 30

image053.png

In that example, I used the -ErrorVariable parameter to specify a variable in which I would store
any error that would occur. Problem is, I used $x. I should have used x by itself:

image055.png

That will store any error in a variable named x, which I can later access by using $x to get its contents
- meaning, whatever error was stored in there.

Use the Pipeline, not an Array
A very common mistake made by traditional programmers who come to PowerShell - which is not
a programming language:

image057.png

This person has created an empty array in $output, and as they run through their computer list and
queryWMI, they’re adding new output objects to the array. Finally, at the end, they output the array
to the pipeline.

Poor practice. You see, this forces PowerShell to wait while this entire command completes. Any
subsequent commands in the pipeline will sit their twiddling their thumbs. A better approach? Use
the pipeline. Its whole purpose is to accumulate output for you - there’s no need to accumulate it
yourself in an array.

Use the Pipeline, not an Array 32

image059.png

Now, subsequent commands will receive output as its being created, letting several commands run
more or less simultaneously in the pipeline.

Backtick, Grave Accent, Escape
You’ll see folks do this a lot:

image061.png

That isn’t a dead pixel on your monitor or a stray piece of toner on the page, it’s the grave accent
mark or backtick. ‘ is PowerShell’s escape character. In this example, it’s “escaping” the invisible
carriage return at the end of the line, removing its special purpose as a logical line-end, and simply
making it a literal carriage return.

I don’t like the backtick used this way.

First, it’s hard to see. Second, if you get any extra whitespace after it, it’ll no longer escape the
carriage return, and your script will break. The ISE even figures this out:

Backtick, Grave Accent, Escape 34

image063.png

Carefully compare the -ComputerName parameter - in this second example, it’s the wrong color for
a parameter name, because I added a space after the backtick on the preceding line. IMPOSSIBLE to
track these down.

And the backtick is unnecessary as a line continuation character. Let me explain why:

PowerShell already allows you to hit Enter in certain situations. You just have to learn what those
situations are, and learn to take advantage of them. I totally understand the desire to have neatly-
formatted code - I preach about that all the time, myself - but you don’t have to rely on a little
three-pixel character to get nicely formatted code.

You just have to be clever.

Backtick, Grave Accent, Escape 35

image065.png

To begin, I’ve put my Get-WmiObject commands in a hash table, so I can format them all nice and
pretty. Each line ends on a semicolon, and PowerShell lets me line-break after each semicolon. Even
if I get an extra space or tab after the semicolon, it’ll work fine. I then splat those parameters to the
Get-WmiObject command.

After Get-WmiObject, I have a pipe character - and you can legally line-break after that, too.

You’ll notice on Select-Object that breaking after a comma as well.

So I end up with formatting that looks at least as good, if not better, because it doesn’t have that
little ‘ floating all over the place.

A Crowd isnâ€™t an Individual
A very common newcomer mistake:

image067.png

Here, the person is treating everything like it contains only one value. But $computername might
contain multiple computer names (that’s what [string[]] means), meaning $bios and $os will contain
multiple items too. You’ll often have to enumerate those to get this working right:

image069.png

Folks will run into this even in simple situations. For example:

A Crowd isnâ€™t an Individual 37

image071.png

PowerShell v2 won’t react so nicely; in v3, the variable inside double quotes is $procs, and since that
variable contains multiple objects, PowerShell implicitly enumerates them and looks for a Name
property. You’ll notice “.name” from the original string appended to the end - PowerShell didn’t do
anything with that.

You’d probably want to enumerate these:

image073.png

These arenâ€™t Your Fatherâ€™s
Commands
Always keep in mind that while PowerShell has things called Dir and Cd, they aren’t the old MS-
DOS commands. They’re simply aliases, or nicknames, to PowerShell commands. That means they
have different syntax.

image075.png

You can run help dir (or ask for help on any other alias) to see the actual command name, and its
proper syntax.

Properties vs. Values
1 $names = Get-ADComputer -filter * |

2 Select-Object -Property Name

3

4 Get-CimInstance -Class Win32_BIOS -ComputerName $names

Know why that won’t work? It’s because the result of Get-ADComputer is an object, which has
properties. You probably knew that. But the result of Select-Object is also an object that has
properties. Specifically, in this case, it’s “Selected” ADComputer object, having a single property:
Name.

Look at the help for Get-CimInstance. The -ComputerName parameter accepts objects of the type
String. It says so, right in the help! But a Selected ADComputer object isn’t the same thing as a
String. The Name property you selected contains strings, but it isn’t a string itself. This is a huge
distinction, and one that trips people up all the time.

Think of a property as a box. That box can contain things, but it’s a thing in and of itself, also. In
this case, the box is called Name, and it contains strings. But you can’t shove that whole box into
something that was just expecting strings. “Hey, I wanted a string, not a box!”

Think about a fax machine. Do you remember those? They accept pages, and transmit those pages.
Now suppose you have an envelope full of pages. You can’t just shove the envelope into the fax
machine and expect good results. In that analogy, the envelope is a property, and the pages inside it
are values. To get the pages into the fax machine, you have to take them out of the envelope first.

What you want to do in this case is get the strings out of the box, and Select-Object offers a way of
doing that:

1 $names = Get-ADComputer -filter * |

2 Select-Object -ExpandProperty Name

3

4 Get-CimInstance -Class Win32_BIOS -ComputerName $names

See the difference? -ExpandProperty gets just the contents of the specified property, rather than
returning an object that only has that property. Want a simple way to test this in the shell? Run
these commands:

1 Get-Service | Select -Property Name | Get-Member

2 Get-Service | Select -ExpandProperty Name | Get-Member

Remote Variables
When using PowerShell remoting, you need to remember that you’re dealing with two or more
computers that don’t share information between them. For example, the following command will
run fine on your local computer:

1 $f1 = 'D:\Scripts\folder1'

2 $f2 = 'D:\Scripts\folder2'

3 Copy-Item -Path $f1 -Recurse -Destination $f2 -Verbose -Force

However, if you try to run just the Copy-Item command on a remote computer, it will fail:

1 $f1 = "D:\Scripts\folder1"

2 $f2 = "D:\Scripts\folder2"

3

4 Invoke-Command -ComputerName MemberServer -ScriptBlock {Copy-Item -Path $f1 - Recur\

5 se -Destination $f2 -Verbose -Force}

6

7 Cannot bind argument to parameter 'Path' because it is null.

8 + CategoryInfo : InvalidData: [:] [Copy-Item], ParameterBindingValidationException

9 + FullyQualifiedErrorId : ParameterArgumentValidationErrorNullNotAllowed,Microsoft.\

10 PowerShell.Commands.CopyItemCommand

11 + PSComputerName : MemberServer

The problem here is that $f1 and $f2 are defined on your computer, but not on the remote computer.
The script block passed by Invoke-Command isn’t evaluated on your computer, it’s simply passed
as-is.

There are two possible fixes. The first is to simply include the variable definitions in the script block:

1 Invoke-Command -ComputerName MemberServer -ScriptBlock {

2 $f1 = "D:\Scripts\folder1"

3 $f2 = "D:\Scripts\folder2"

4 Copy-Item -Path $f1 -Recurse -Destination $f2 -Verbose -Force

5 }

Another technique, available in PowerShell v3 and later, is to use the $using variable designator.
PowerShell pre-scans the script block for these, and will pass along your local variable values to the
remote computer(s);

Remote Variables 41

1 $f1 = "D:\Scripts\folder1"

2 $f2 = "D:\Scripts\folder2"

3

4 Invoke-Command -ComputerName MemberServer -ScriptBlock {

5 Copy-Item -Path $using:f1 -Recurse -Destination $using:f2 -Verbose -Force}

The special $using: syntax is what makes this version of the command work.

New-Object PSObject vs.
PSCustomObject
There’s often some confusion in regards to the differences between using New-Object PSObject and
PSCustomObject, as well as how the two work.

Either approach can be used to take a set of values from a collection of PowerShell objects and
collate them into a single output. As well, both avenues will output the data as NoteProperties in
the System.Management.Automation.PSCustomObject object types. So what’s the big deal between
them?

For starters, the New-Object cmdlet was introduced in PowerShell v1.0 and has gone through a
number of changes, while the use of the PSCustomObject class came later in v3.0. For systems using
PowerShell v2.0 or earlier, New-Object must be used. The key difference between the 2.0 version
and 1.0 version from an administrative point of view is that 2.0 allows the use of hash tables. For
example:

New-Object PSObject in v1.0

1 $Path = "c:\scripts"

2 $Directory = Get-Acl -Path $Path

3

4 ForEach ($Dir in $Directory.Access){

5

6 $DirPermissions = New-Object -TypeName PSObject

7 $DirPermissions | Add-Member -MemberType NoteProperty -Name Path -Value $Path

8 $DirPermissions | Add-Member -MemberType NoteProperty -Name Owner -Value $Direct\

9 ory.Owner

10 $DirPermissions | Add-Member -MemberType NoteProperty -Name Group -Value $Dir.Id\

11 entityReference

12 $DirPermissions | Add-Member -MemberType NoteProperty -Name AccessType -Value $D\

13 ir.AccessControlType

14 $DirPermissions | Add-Member -MemberType NoteProperty -Name Rights -Value $Dir.F\

15 ileSystemRights

16

17 $DirPermissions

18 }

New-Object PSObject vs. PSCustomObject 43

With the New-Object method in PowerShell v1.0, you have to declare the object type you want to
create and add members to the collection in individual commands. This changed however in v2.0
with the ability to use hashtables:

New-Object in PS 2.0

1 $Path = "c:\scripts"

2 $Directory = Get-Acl -Path $Path

3

4 ForEach ($Dir in $Directory.Access){

5

6 $DirPermissions = New-Object -TypeName PSObject -Property @{

7

8 'Path' = $Path

9 'Owner' = $Directory.Owner

10 'Group' = $Dir.IdentityReference

11 'AccessType' = $Dir.AccessControlType

12 'Rights' = $Dir.FileSystemRights

13

14 }

15

16 $DirPermissions

17 }

Here’s the output:

This saved a lot of overhead in typing and provided a cleaner looking script. However, both methods
have the same problem in that the output is not necessarily in the same order as you have it listed,
so if you’re looking for a particular format, it may not work. PSCustomObject fixed this when it
was introduced in v3.0, along with providing more streamlining in your scripts.

PSCustomObject in PowerShell v3.0

New-Object PSObject vs. PSCustomObject 44

1 $Path = "c:\scripts"

2 $Directory = Get-Acl -Path $Path

3

4 ForEach ($Dir in $Directory.Access){

5 [PSCustomObject]@{

6 Path = $Path

7 Owner = $Directory.Owner

8 Group = $Dir.IdentityReference

9 AccessType = $Dir.AccessControlType

10 Rights = $Dir.FileSystemRights

11 }#EndPSCustomObject

12 }#EndForEach

Note the order of the properties

As demonstrated, your output will always match what you have defined in your hashtable. Another
advantage of using PSCustomObject is that it has been noted to enumerate the data faster than its
New-Object counterpart. The only thing to keep in mind with PSCustomObject is that it will not
work with systems running PSv2.0 or earlier.

Running Something as the “Currently
Logged-in User”
A common PowerShell request is to be able to remotely kick off some code that runs under the
account of the user that’s currently logged on to the remote machine, or the user who most often
uses the remote machine.

This is really difficult, and usually impractical.

First, understand thatWindows is inherently amulti-user operating system. It doesn’t have a concept
for “the currently logged-on user” because there might be many logged-on users. Even though client
versions of Windows don’t technically permit multiple interactive logons, the base operating system
acts as if it can.

Second, as a multi-user OS, Windows’ job is to maintain a strict firewall around each user’s process
space. You don’t want one user jumping into another’s space, because that would be a huge risk to
security and stability. So you can’t easily log in as one user and run something that another user can
“see.”

For example, a common version of this request is for an admin to remotely make Notepad pop up in
front of users, so they can remotely convey some important message. Sadly, Notepad is not a good
instant messaging app, andWindows doesn’t make this easy. And, if you think about it, what would
malware be able to do if this was possible? It’d be horrible!

With very few, difficult exceptions, you can’t really run something “as another user on a remote
machine.” One exception is if you know the remote user’s user name and password. If you do,
you can establish a Remoting session to the computer using their credentials, and potentially have
applications run in that user’s process space. But you can see how impractical that is in most
situations.

Commands that Need a User Profile
May Fail When Run Remotely
Many commands act against the currently logged-on user’s profile. Those commands can sometimes
fail when you run them over a Remoting connection, such as by using Invoke-Command or Enter-
PSSession. For example, many installers default to creating per-user icons, and those can fail when
run remotely – even when run in a “silent install” mode.

The problem is that, when you connect to a remote computer, you aren’t spinning up a complete
user environment. You’re technically not “logging on” to the machine in the usual sense. You’re
authenticating, yes, but in much the same way that you’d authenticate to a shared folder. Your
remote connection doesn’t have a complete user profile, and so anything that’s expecting one can
get errors and fail (even if they don’t show those errors).

There’s no easy fix for this, unfortunately.

Writing to SQL Server
Saving data to SQL Server - versus Excel or some other contraption - is easy.

Assume that you have SQL Server Express installed locally. You’ve created in it a database called
MYDB, and in that a table called MYTABLE. The table has ColumnA and ColumnB, which are both
strings (VARCHAR) fields. And the database file is in c:\myfiles\mydb.mdf. This is all easy to set up
in a GUI if you download SQL Server Express “with tools” edition. And it’s free!

1 $cola = "Data to go into ColumnA"

2 $colb = "Data to go into ColumnB"

3

4 $connection_string = "Server=.\SQLExpress;AttachDbFilename=C:\Myfiles\mydb.mdf;Datab\

5 ase=mydb;Trusted_Connection=Yes;"

6 $connection = New-Object System.Data.SqlClient.SqlConnection

7 $connection.ConnectionString = $connection_string

8 $connection.Open()

9 $command = New-Object System.Data.SqlClient.SqlCommand

10 $command.Connection = $connection

11

12 $sql = "INSERT INTO MYTABLE (ColumnA,ColumnB) VALUES('$cola','$colb')"

13 $command.CommandText = $sql

14 $command.ExecuteNonQuery()

15

16 $connection.close()

You can insert lots of values by just looping through the three lines that define the SQL statement
and execute it:

1 $cola = @('Value1','Value2','Value3')

2 $colb = @('Stuff1','Stuff2','Stuff3')

3

4 $connection_string = "Server=.\SQLExpress;AttachDbFilename=C:\Myfiles\mydb.mdf;Datab\

5 ase=mydb;Trusted_Connection=Yes;"

6 $connection = New-Object System.Data.SqlClient.SqlConnection

7 $connection.ConnectionString = $connection_string

8 $connection.Open()

9 $command = New-Object System.Data.SqlClient.SqlCommand

10 $command.Connection = $connection

Writing to SQL Server 48

11

12 for ($i=0; $i -lt 3; $i++) {

13 $sql = "INSERT INTO MYTABLE (ColumnA,ColumnB) VALUES('$($cola[$i])','$($colb[$i])'\

14)"

15 $command.CommandText = $sql

16 $command.ExecuteNonQuery()

17 }

18

19 $connection.close()

It’s just as easy to run UPDATE or DELETE queries in exactly the same way. SELECT queries use
ExecuteReader() instead of ExecuteNonQuery(), and return a SqlDataReader object that you can use
to read column data or advance to the next row.

Getting Folder Sizes
Folks often ask how to use PowerShell to get the size of a folder, such as a user home folder.

Problem is, _folders don’t have a size. _Windows literally doesn’t track size for folder objects. A
folder’s “size” is merely the sum of it’s files’ sizes. Which means you have to add them up.

1 Get-ChildItem -Path <whatever> -File -Recurse |

2 Measure-Object -Property Length -Sum

As one example. Bottom line, you need to get all the files, and add up their Length properties.

	Table of Contents
	The Big Book of PowerShell Gotchas
	Format right
	Where is the ____ Command? Iâ€™ve Installed the Latest Version of PowerShell and Canâ€™t Find it!
	PowerShell.exe isnâ€™t PowerShell
	Accumulating Output in a Function
	ForEach vs ForEach vs ForEach
	Tab Completion
	-Contains isnâ€™t -Like
	You Canâ€™t Have What You Donâ€™t Have
	-Filter Values Diversity
	Not Everything Produces Output
	One HTML Page at a Time, Please
	[Bloody
	Donâ€™t+Concatenate+Strings
	$ isnâ€™t Part of the Variable Name
	Use the Pipeline, not an Array
	Backtick, Grave Accent, Escape
	A Crowd isnâ€™t an Individual
	These arenâ€™t Your Fatherâ€™s Commands
	Properties vs. Values
	Remote Variables
	New-Object PSObject vs. PSCustomObject
	New-Object PSObject in v1.0
	New-Object in PS 2.0
	PSCustomObject in PowerShell v3.0

	Running Something as the ``Currently Logged-in User''
	Commands that Need a User Profile May Fail When Run Remotely
	Writing to SQL Server
	Getting Folder Sizes

