

The Monad Manifesto, Annotated

The DevOps Collective, Inc.

This book is for sale at http://leanpub.com/themonadmanifestoannotated

This version was published on 2018-10-28

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2018 The DevOps Collective, Inc.

http://leanpub.com/themonadmanifestoannotated
http://leanpub.com/
http://leanpub.com/manifesto

Also By The DevOps Collective, Inc.
Creating HTML Reports in Windows PowerShell

A Unix Person’s Guide to PowerShell

The Big Book of PowerShell Error Handling

DevOps: The Ops Perspective

Ditch Excel: Making Historical and Trend Reports in PowerShell

Secrets of PowerShell Remoting

The Big Book of PowerShell Gotchas

Why PowerShell?

Windows PowerShell Networking Guide

The PowerShell + DevOps Global Summit Manual for Summiteers

Why PowerShell? (Spanish)

Secrets of PowerShell Remoting (Spanish)

DevOps: The Ops Perspective (Spanish)

The Monad Manifesto: Annotated (Spanish)

Creating HTML Reports in PowerShell (Spanish)

The Big Book of PowerShell Gotchas (Spanish)

The Big Book of PowerShell Error Handling (Spanish)

DevOps: WTF?

PowerShell.org: History of a Community

http://leanpub.com/u/devopscollective
http://leanpub.com/creatinghtmlreportsinwindowspowershell
http://leanpub.com/aunixpersonsguidetopowershell
http://leanpub.com/thebigbookofpowershellerrorhandling
http://leanpub.com/devopstheopsperspective
http://leanpub.com/ditchexcelmakinghistoricalandtrendreportsinpowershell
http://leanpub.com/secretsofpowershellremoting
http://leanpub.com/thebigbookofpowershellgotchas
http://leanpub.com/whypowershell
http://leanpub.com/windowspowershellnetworkingguide
http://leanpub.com/summiteermanual
http://leanpub.com/why-powershell-spanish
http://leanpub.com/secrets-of-powershell-remoting-spanish
http://leanpub.com/devops-the-ops-perspective-spanish
http://leanpub.com/monad-manifesto-annotated-spanish
http://leanpub.com/creating-html-reports-in-powershell-spanish
http://leanpub.com/big-book-of-powershell-gotchas-spanish
http://leanpub.com/big-book-of-powershell-error-handling-spanish
http://leanpub.com/devopswtf
http://leanpub.com/powershellorghistoryofacommunity

Contents

The Monad Manifesto - Annotated . 1

Chapter 1 - What is Monad? . 3

Chapter 2 - Problem . 5

Chapter 3 - The Traditional Approach to Administrative Automation 7

Chapter 4 - New Approaches . 9
4.1 - A New Approach to Building Commands . 9
4.2 - A New Approach to Composing Solutions . 10
4.3 - A New Approach to Management Models . 10
4.4 - A New Approach to Management GUI Tools . 11

Chapter 5 - The Monad Automation Model (MAM) . 12
5.1 - An Example . 13
5.2 - Leveraging .Net . 15

Chapter 6 - The Monad Shell (MSH) . 16
6.1 - Pipelines of .Net Objects . 16
6.2 - Monad Runtime Environment Components . 17
6.3 - MSH Scripting Language . 20

Chapter 7 - The Monad Management Models (MMM) . 21
An Example . 21

Chapter 8 - The Monad Remote Script (MRS) . 23

Chapter 9 - The Monad Management Console (MMC) . 24

Chapter 10 - Value Propositions . 25

The Monad Manifesto - Annotated
by Jeffrey Snover as annotated by the PowerShell Community

This project is intended to preserve and annotate “The Monad Manifesto¹,” a paper written by
Windows PowerShell inventor Jeffrey Snover² at Microsoft in 2002³. The idea for this project came
from Pluralsight author TimWarner⁴, with the initial annotations being made by Tim and Microsoft
MVP Don Jones⁵.

The original Manifesto was a forward-looking document, predating the public release of PowerShell
by around 4 years. In the years since PowerShell’s 2006 release⁶, the product has evolved substantially
- but always around the broad brush strokes outlined in the Manifesto.

We felt that it was not only important to preserve the document for historical purposes, but also
to annotate and expand upon the various concepts it introduces. We’ll attempt to link to references
for the now-real technologies that the Manifest predicted, and to provide contextual explanations
around some of the Manifesto’s directives.

You’ll notice [^1] footnotes in the text. These are aMultiMarkdown⁷ feature that aren’t supported by
our publishing platform, but they’re meant to link to corresponding footnotes at the bottom of the
page. In some cases, these are Jeffrey’s original footnotes, andwe’vemarked those with “ORIGINAL”
to set them apart from footnotes we’ve added ourselves.

This guide is released under the Creative Commons Attribution-NoDerivs 3.0 Unported License. The
authors encourage you to redistribute this file as widely as possible, but ask that you do not modify
the document.

Was this book helpful? The author(s) kindly ask(s) that you make a tax-deductible (in the US; check
your laws if you live elsewhere) donation of any amount to The DevOps Collective⁸ to support their
ongoing work.

Check for Updates! Our ebooks are often updated with new and corrected content. We make them
available in three ways:

¹http://www.jsnover.com/blog/2011/10/01/monad-manifesto/
²https://social.technet.microsoft.com/profile/Jeffrey%20Snover%20Windows%20Server
³http://takemeback.to/08-August-2002#.VWsXW1xVhBc
⁴http://www.pluralsight.com/author/tim-warner
⁵https://twitter.com/concentrateddon
⁶http://blogs.msdn.com/b/powershell/archive/2006/11/14/windows-powershell-1-0-released.aspx
⁷http://fletcherpenney.net/multimarkdown/
⁸https://devopscollective.org/donate/

http://www.jsnover.com/blog/2011/10/01/monad-manifesto/
https://social.technet.microsoft.com/profile/Jeffrey%20Snover%20Windows%20Server
http://takemeback.to/08-August-2002#.VWsXW1xVhBc
http://www.pluralsight.com/author/tim-warner
https://twitter.com/concentrateddon
http://blogs.msdn.com/b/powershell/archive/2006/11/14/windows-powershell-1-0-released.aspx
http://fletcherpenney.net/multimarkdown/
https://devopscollective.org/donate/
http://www.jsnover.com/blog/2011/10/01/monad-manifesto/
https://social.technet.microsoft.com/profile/Jeffrey%20Snover%20Windows%20Server
http://takemeback.to/08-August-2002#.VWsXW1xVhBc
http://www.pluralsight.com/author/tim-warner
https://twitter.com/concentrateddon
http://blogs.msdn.com/b/powershell/archive/2006/11/14/windows-powershell-1-0-released.aspx
http://fletcherpenney.net/multimarkdown/
https://devopscollective.org/donate/

The Monad Manifesto - Annotated 2

• Our main, authoritative GitHub organization⁹, with a repo for each book. Visit https://github.
com/devops-collective-inc/

• Our GitBook page¹⁰, where you can browse books online, or download as PDF, EPUB, or
MOBI. Using the online reader, you can link to specific chapters. Visit https://www.gitbook.
com/@devopscollective

• On LeanPub¹¹, where you can download as PDF, EPUB, or MOBI (login required), and
“purchase” the books to make a donation to DevOps Collective. You can also choose to be
notified of updates. Visit https://leanpub.com/u/devopscollective

GitBook and LeanPub have slightly different PDF formatting output, so you can choose the one you
prefer. LeanPub can also notify you when we push updates. Our main GitHub repo is authoritative;
repositories on other sites are usually just mirrors used for the publishing process. GitBook will
usually contain our latest version, including not-yet-finished bits; LeanPub always contains the most
recent “public release” of any book.

⁹https://github.com/devops-collective-inc
¹⁰https://www.gitbook.com/@devopscollective
¹¹https://leanpub.com/u/devopscollective

https://github.com/devops-collective-inc
https://github.com/devops-collective-inc/
https://github.com/devops-collective-inc/
https://www.gitbook.com/@devopscollective
https://www.gitbook.com/@devopscollective
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective
https://leanpub.com/u/devopscollective
https://github.com/devops-collective-inc
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective

Chapter 1 - What is Monad?

Monad¹²¹³ is the next generation platform for administrative automation. Monad solves traditional
management problems by leveraging the .Net Platform¹⁴. From our prototype (though limited),
we can project significant benefits to developers, testers, power users, and administrators. Monad
leverages¹⁵ the .NET Common Runtime¹⁶ to provide a powerful, consistent, intuitive, extensible and
useful set of tools that drive down costs of administration and make the life of non-programmers a
lot easier.

Monad consists of:

1. Monad AutomationModel (MAM)¹⁷: An automation model based upon .Net classes¹⁸, methods
and attributes to produce Cmdlets¹⁹.²⁰

2. Monad Shell (MSH)²¹: A .Net based script execution environment for exposing Cmdlets as
API²²s command line tools and interactive programmable command line shell.

3. Monad Management Models (MMM)²³: The set managed code base classes (or interfaces) to
implement specific management scenarios and in-the-box administrative tools to execute those
scenarios.

4. Monad Remote Scripting (MRS)²⁴: A set of Web Service²⁵ based components that allow scripts
to be remotely executed on many machines²⁶.

¹²(ORIGINAL) This is not a Windows PowerShell whitepaper nor is it an accurate description of how V1.0 works. This is a version of the
original Monad Manifesto which articulated the long term vision and started the development effort which became PowerShell. Many of the
elements described in this document have been delivered and those that have not provide a good roadmap for the future. The document has
been updated for publication. Confidential information has been culled and examples are updated to reflect the current syntax.

¹³(ORIGINAL) Monads are Leibniz’s term for the fundamental unit of existence that aggregates into compounds to implement a purpose.
In this philosophy, everything is a composition of Monads. This captures what we want to achieve with composable management. More
information on Monadology can be found at: http://www.wise.virginia.edu/philosophy/phil206/Leibniz.html

¹⁴http://bit.ly/1PAsRao
¹⁵It should be noted that PowerShell very nearly didn’t exist because of its dependency on .NET. At the time, in 2004-2006, a startling

number of high-profile managed code projects were failing, contributing to the delays in Windows Vista. Running around Microsoft preaching
about some management scripting language written in .NET wasn’t politically correct at the time. In fact, it was so risky that the Exchange
Server team actually built in entire intermediate API under their PowerShell cmdlets, on the theory that they could trash the cmdlets and
switch to something else more easily, if needed.

¹⁶http://bit.ly/1Q0TrV3
¹⁷
¹⁸http://bit.ly/1R9oPTO
¹⁹https://msdn.microsoft.com/en-us/library/ms714395(v=vs.85).aspx
²⁰Version 1 of PowerShell shipped in 2006, and provided the implementation for these cmdlets. Cmdlets today are written in .NET languages,

and consist of a single class per cmdlet. PowerShell provides a base class that does much of the heavy lifting; developers define properties of the
class that become parameters, and override specificmethods to participate in the pipeline lifecycle. Cmdlets, alongwith the overall environment,
were the first of four major vision points proposed in the Manifesto.

²¹
²²https://msdn.microsoft.com/en-us/library/ms123401.aspx
²³
²⁴
²⁵https://msdn.microsoft.com/en-us/library/ms950421.aspx
²⁶Remoting was introduced in PowerShell version 2, which shipped in the box with Windows Vista and Windows Server 2008. Remoting

is the second of the four major vision points proposed in the Manifesto.

http://bit.ly/1PAsRao
http://bit.ly/1Q0TrV3
http://bit.ly/1R9oPTO
https://msdn.microsoft.com/en-us/library/ms714395(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms123401.aspx
https://msdn.microsoft.com/en-us/library/ms950421.aspx
http://blogs.msdn.com/b/powershell/archive/2006/11/14/windows-powershell-1-0-released.aspx
http://bit.ly/1Q0TyzZ
https://en.wikipedia.org/wiki/Monadology
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz
https://en.wikipedia.org/wiki/Composability
http://www.wise.virginia.edu/philosophy/phil206/Leibniz.html
http://bit.ly/1PAsRao
http://bit.ly/1Q0TrV3
http://bit.ly/1R9oPTO
https://msdn.microsoft.com/en-us/library/ms714395(v=vs.85).aspx
https://en.wikipedia.org/wiki/List_of_CLI_languages
https://msdn.microsoft.com/en-us/library/ms123401.aspx
https://msdn.microsoft.com/en-us/library/ms950421.aspx
http://blogs.msdn.com/b/powershell/archive/2009/07/23/windows-powershell-2-0-rtm.aspx
https://technet.microsoft.com/en-us/magazine/ff700227.aspx

Chapter 1 - What is Monad? 4

5. Monad Management Console (MMC)²⁷: A .Net based model and set of services for building
management GUIs on top of MSH²⁸ and exposing all GUI interactions as user-visible scripts²⁹.

This white paper³⁰ presents the traditional approach to administrative automation, its strengths and
shortcomings. Monad’s new approaches are then articulated. An overview of the major components
of Monad is then presented. A set of value propositions³¹ is then articulated for Monad’s target
audiences.

Notes:
²⁷
²⁸https://technet.microsoft.com/en-us/magazine/2005.11.scripting.aspx
²⁹Although never exposed as an MMC per se, PowerShell’s engine was implemented as a .NET class. Any .NET application can instantiate

the engine, run commands, and translate the output into a GUI display. Exchange Server 2007 was the first product to do so, and remains one
of the best examples of the “full-on PowerShell approach” to administration.

³⁰https://en.wikipedia.org/wiki/White_paper
³¹https://en.wikipedia.org/wiki/Value_proposition

https://technet.microsoft.com/en-us/magazine/2005.11.scripting.aspx
https://en.wikipedia.org/wiki/White_paper
https://en.wikipedia.org/wiki/Value_proposition
https://technet.microsoft.com/en-us/magazine/2005.11.scripting.aspx
https://msdn.microsoft.com/en-us/library/bb742441.aspx
https://technet.microsoft.com/en-us/magazine/2006.12.managementshell.aspx
https://en.wikipedia.org/wiki/White_paper
https://en.wikipedia.org/wiki/Value_proposition

Chapter 2 - Problem
Windows has simple GUI administrative tools for basic users (Control Panel, MMC, etc). Windows
also has a rich set of languages, APIs³² and object models for advanced systems programmers (C³³,
C++³⁴, C#³⁵, WMI³⁶, Win32³⁷, .Net, etc). What is missing is the vital middle – administrator-oriented
composable tools to type commands and automate management. The vital middle is typically
addressed by scripting languages.

Our current scripting solutions (WSH³⁸, VB³⁹) focus on the high end of the scripting world which
manage the platform using very low level abstractions such as complex object models, schema, and
APIs⁴⁰. This is effectively systems programming and misses much of the admin community. Admin
scripting flows from command line administration⁴¹, it must be small, simple, incremental, and deal
with very high levels of abstraction.

John Ousterhout⁴² described the distinction between scripting and systems programming well in his
paper Scripting: Higher Level Programming for the 21st Century⁴³.

³²APIs in fact, are the main differentiator between Windows and Linux/UNIX systems. On Linux/UNIX, everything essentially looks like
a folder or a file, and nearly every bit of configuration is in a loosely-structured text file. Automating administration in that environment is
easy, because you only have one API: text files. Windows is harder because to do anything, you’ve got to learn that something’s API - and all
the APIs are different. Knowing how to add a user to Active Directory doesn’t help you create a site in SharePoint - they’re all different APIs.

³³http://bit.ly/1SmIDVh
³⁴http://bit.ly/1HmcYe5
³⁵http://bit.ly/1EngdQ6
³⁶http://bit.ly/1ekpnrY
³⁷http://bit.ly/1IORfB2
³⁸http://bit.ly/1ekpvra
³⁹http://bit.ly/1Q0VwjT
⁴⁰Misses, in other words, the point, because VBScript is basically a simplified way of dealing with APIs that were meant for developers.

VBScript also assumes that product teams have created dedicated, VBScript-compatible APIs, which most didn’t. Getting anything done with
VBScript was often complicated, and always hit-or-miss.

⁴¹(ORIGINAL) Administrative scripting is often the progression from ad hoc scripts to automated operations. Admins notice that they type
the same commands over and over again so they build a script. The notice that their scripts contain lots of the same things so they produce
parameterized subroutines and progress from there.

⁴²http://web.stanford.edu/~ouster/cgi-bin/home.php
⁴³http://web.stanford.edu/~ouster/cgi-bin/papers/scripting.pdf

http://bit.ly/1SmIDVh
http://bit.ly/1HmcYe5
http://bit.ly/1EngdQ6
http://bit.ly/1ekpnrY
http://bit.ly/1IORfB2
http://bit.ly/1ekpvra
http://bit.ly/1Q0VwjT
http://web.stanford.edu/~ouster/cgi-bin/home.php
http://web.stanford.edu/~ouster/cgi-bin/papers/scripting.pdf
http://www.cyberciti.biz/faq/what-is-the-difference-between-linux-and-unix/
https://technet.microsoft.com/en-us/library/hh852274(v=wps.630).aspx
https://technet.microsoft.com/en-us/library/ff678226.aspx
http://bit.ly/1SmIDVh
http://bit.ly/1HmcYe5
http://bit.ly/1EngdQ6
http://bit.ly/1ekpnrY
http://bit.ly/1IORfB2
http://bit.ly/1ekpvra
http://bit.ly/1Q0VwjT
https://msdn.microsoft.com/en-us/library/d1wf56tt(v=vs.84).aspx
https://en.wikipedia.org/wiki/Ad_hoc
https://technet.microsoft.com/en-us/magazine/jj554301.aspx
http://web.stanford.edu/~ouster/cgi-bin/home.php
http://web.stanford.edu/~ouster/cgi-bin/papers/scripting.pdf

Chapter 2 - Problem 6

Degree of Typing

Ousterhout⁴⁴ posits that scripting allows for “gluing” applications together – a higher level ab-
straction than system programming – enabling (even) more rapid application development than
today’s systems programming languages. The fundamental argument is that we should continue
to ride Moore’s Law⁴⁵ to move development to higher levels of abstraction via script. To enable
administration automation in the mainstream, administrators need a comprehensive and scriptable
shell and utilities and the administrative GUIs⁴⁶ need to be layered on top of this infrastructure⁴⁷. This
will enable efficient training of administrators on command line automation, ensure comprehensive
administrative capabilities at the command line, and the economies of scale of an admin-composable
automation model.

Notes
⁴⁴http://web.stanford.edu/~ouster/cgi-bin/home.php
⁴⁵http://www.mooreslaw.org
⁴⁶https://notgartner.wordpress.com/2008/02/23/how-to-host-the-powershell-runtime/
⁴⁷Snover felt strongly about layering GUIs on top of command-line. That’s in part because it’s how many Linux/UNIX administrative GUIs

do things, but it’s mostly because doing it that way forces you to ensure that everything can be done from the command-line. The GUI doesn’t
become a special class of citizen holding special, unique powers; it’s just another consumer of the command-line. The command-line, in turn,
can be much more easily consumed by other consumers than a GUI could be.

http://web.stanford.edu/~ouster/cgi-bin/home.php
http://www.mooreslaw.org/
https://notgartner.wordpress.com/2008/02/23/how-to-host-the-powershell-runtime/
http://web.stanford.edu/~ouster/cgi-bin/home.php
http://www.mooreslaw.org/
https://notgartner.wordpress.com/2008/02/23/how-to-host-the-powershell-runtime/

Chapter 3 - The Traditional Approach
to Administrative Automation
The traditional⁴⁸ model for administrative automation is powerful and successful. It consists of:

1. A programmatic shell (e.g. sh, csh, ksh, bash)⁴⁹
2. A set of administrative commands (e.g. ifconfig, ps, chmod, kill)
3. A set of text manipulation utilities (e.g. awk, grep, sed).
4. Administrative GUIs layered on top of commands and utilities

This model’s philosophy is that every executable should do a narrow set of functions and complex
functions should be composed by pipelining or sequencing executables together. This model has
been extremely successful despite serious drawbacks. Upon inspection, what is widely considered a
UNIX stronghold is in fact a flawed implementation of this model⁵⁰.

When you step back and examine what is really going on when someone uses a pipelined command
like “$ a | b | c”, you conclude that the first command “a” did not accomplish what the admin wanted
to do. If it had, the admin would have just type “a” and been done with it. So then the question is
why didn’t “a” do what the admin wanted? The answer is that in this traditional model, the stand-
alone executables tightly bind three operations together: 1) getting objects; 2) processing objects; 3)
outputting results as text⁵¹. One of those operations does not do what the admin needs so the rest of
the pipeline is an attempt to fix that.

Because the executable outputs text, the downstream elements must use text manipulation utilities
to try to get back to the original objects to do additional work. While the basic model is extremely
powerful, its intrinsic flaw is the tight binding of these operations and the use of unstructured text
for integration⁵². This requires clumsy, lossy, imprecise text manipulation utilities.

⁴⁸Traditional in the Linux/Unix world; certainly not in Windows. This is in fact the change Snover was proposing: to make administrative
administration work more like it does in Unix, since Unix is a decades-proven model for success. It probably didn’t hurt that Snover came from
Digital Computer, a company with more than a passing familiarity with Unix variants and similar operating systems.

⁴⁹These examples emphasize the influence mainframe and UNIX had on Snover’s design choices.
⁵⁰People who view PowerShell as a “linux-ification” of Windows should note that Snover wasn’t enamored of the Unix command-line

model. He felt it was inconsistent (and, having grown organically, it is) and often lacked good semantics. In many ways, PowerShell was the
first “second comer” to Unix’s command-line model, taking its strengths but re-thinking what had become somewhat obvious weaknesses.

⁵¹Practical upshot of this is that tools - cmdlets, in the PowerShell world - should do one thing, and one thing only. Get objects, process
objects, or format objects into text - pick just one, and do only that. If you do more than one, you start creating a monolithic tool that’s less easy
to re-use elsewhere. This do-one-thing concept has become a driving foundation for best practices in the PowerShell community, especially
around toolmaking.

⁵²There’s an enormous point here that’s often missed. When you write a tool that produces text, downstream tools have to know how to
process that text in the exact format you produced it. Your data is unstructured. If you change the output of your tool, everything that used to
work with it, won’t. Object orientation - that is, presenting data in a standardized structure that could be consumed by anything understanding
“objects” - was one of the biggest differences between PowerShell and what had come before. Much of a Linux admin’s time is spent in the
grep/sed/awk cycle, since they’ve got to parse out text so the next tool has data to work with; PowerShell all but eliminates that entirely
ancillary work.

Chapter 3 - The Traditional Approach to Administrative Automation 8

The traditional model reflects the state of the technology that was available at the time it emerged.
.Net provides⁵³ a new set of capabilities and opens up the possibility of new approaches. These new
approaches allow us to replace the traditional model with a decisively superior one. That model is
Monad.

Notes
⁵³Realistically, COM could have provided the same capabilities as it was object-oriented. However, by the time the Manifesto was written,

COM was effectively deprecated and Microsoft had moved on to .NET.

Chapter 4 - New Approaches

Monad takes new approaches to the issues of 1) building commands, 2) composing solutions 3)
management models and 4) management GUIs. The Monad architecture flows from the following
observations:

1. Most solutions are home brewed and composed out of existing commands by administrators.
2. Most solutions are focused on either automating management or providing ad hoc fixes.
3. Most administrators are para-programmers. They either don’t have the desire, skill or (more

often), the time to do sophisticated programming.
4. Most application developers won’t make their code manageable unless there is immediate and

substantial user benefit⁵⁴.

4.1 - A New Approach to Building Commands

The traditional approach to building commands is inefficient. Much of the effort is spent rewriting
the same functions over and over again by different people in different ways. They all:

• Parse, validate, and encode user input.
• Document usage.
• Log activity.
• Format data, output results and report errors.
• Operate on remote nodes or sets of remote nodes.

Yet, despite all this commonality, most platforms⁵⁵⁵⁶ provide little to no support for doing these
activities in common consistent ways. The result is that today’s commands are inefficient to develop
and inconsistent to use⁵⁷.

Monad takes a different approach providing developers maximal leverage and end users maximal
consistency by defining an automationmodel for applications which factors out common functions

⁵⁴Meaning, most developers won’t implement interfaces that administrators can use to manage the application. At best, a “lazy” developer
might simply put all their configuration information into a text file and call that “manageable.” Ironically, that’s essentially how Unix is built
from the ground up, and it ismanageable, because there’s little as easy as modifying a text file, especially if it’s structured (as in JSON or XML).

⁵⁵ORIGINAL: UNIX has the getopt() call for simple command option parsing.
⁵⁶ORIGINAL: VMS DCL and AS400’s CL are the exceptions to this. They provide a common command parser so the commands that use

this have a high degree of syntactic consistency.
⁵⁷Which is why developers hate making them and admins hate using them.

http://www.gnu.org/software/libc/manual/html_node/Using-Getopt.html
http://h71000.www7.hp.com/doc/732final/9996/9996pro.html

Chapter 4 - New Approaches 10

so they can be implemented once in a common runtime environment⁵⁸. Developers no longer
produce stand alone executables. Instead, they write narrowly focused .Net classes (Cmdlets)
which then are exposed as APIs, commands, and GUIs. The common functions are implemented
and tested once and provide a single set of semantics as well as a consistent and uniform set of error
messages.⁵⁹

4.2 - A New Approach to Composing Solutions

The traditional approach to composing solutions is difficult and fragile. It uses pipelines to perform
prayer-based parsing of text streams⁶⁰. These mechanisms are awkward, inconsistent, and imprecise.
Admins spend the majority of their thought process on mechanisms instead of problem solving.
Monad takes a different approach providing a precise, powerful script execution engine for creating
pipelines of .Net objects. Instead of piping unstructured text, we pipe .Net objects⁶¹. This allows
the downstream pipeline components to operate directly on the objects and their properties using
the .Net Reflection⁶² APIs. (The reflection APIs allow a utility to find the type of an object, what
properties/methods it has, get its property values and invoke its methods)

The Monad Runtime environment provides a means to access Cmdlets and run scripts on remote
machines via Web Services.⁶³

4.3 - A New Approach to Management Models

The traditional approach to management models produces an inconsistent admin experience. Today
there are thousands of locally optimized commands. Each command developer defines his own
management model with a set of names, and concepts. While copying of popular commands occurs,
there is no systemic incentive for doing so. Efforts have been made to provide guidelines which
would drive global optimization but the weight of legacy has made it difficult for such efforts to
gain much traction.

A similar situation exists with today’s instrumentation technologies which languish due to lack
of tool support. Instrumentation evangelization efforts are difficult as [product] groups reject the
“build it and they will come” strategy. Tool developers balk at the vast surface area of objects and

⁵⁸ORIGINAL: There is a wonderful synergy between programmer’s desire to minimize the amount of code they write for management and
customers desire to have a consistent management experience.

⁵⁹This is the model PowerShell adopted. Cmdlets are instances of a class, which they inherit as their base. That class provides a ton of
common functionality, so that the actual code in a cmdlet is around 99% focused on whatever it is that cmdlet is doing. The cmdlet developer
doesn’t focus on parsing command-line arguments, validating mandatory items, etc.

⁶⁰Prayer based parsing is when you parse the text and pray that you got it right. e.g. Cut off the first 3 (or was it 4?) lines, cut out column
30-40 (assuming that those spaces are not tabs), cast that as an integer (hmm. – does anyone use 64 bits?…well let’s just hope its 32 bits).

⁶¹An “object” in this sense is little more than a set of structured data, not unlike a database table or a spreadsheet. Each object represents
some management component, and its properties represent bits of information about that object. Commands don’t have to parse these objects
to find data, because .Net understands the object structure and can simply retrieve bits of information by referring to the property names.

⁶²http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconreflectionoverview.asp
⁶³One of the first oblique references to what became PowerShell Remoting, which is indeed a web service based onWS-MAN (Web Services

for Management).

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconreflectionoverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconreflectionoverview.asp

Chapter 4 - New Approaches 11

respond by either providing generic functionality (like monitoring or browsing) across a broad range
of objects or providing rich features for a narrow set of objects.

Monad takes a different approach: it minimizes the cost of automation and provides immediate end-
user benefit by providing scenario-based automation extension classes and in-the-box tools that
exploit those classes. Monad can support almost any automation schema but strongly encourages
the use of standard schemas by providing a set of base classes for specific administrative scenarios.
Those base classes include: Navigation, Diagnostics, Configuration, Lifecycle, and Operations⁶⁴.
These classes provide common syntax, switches, internationalized error messages and solutions to
common scenario problems (e.g. a common implementation of a directory stack for all the navigation
commands]). Monad also provides a set of UI controls and tools that ship with the OS that drive
those extensions to perform a particular management task.

4.4 - A New Approach to Management GUI Tools

The traditional approach to management GUIs provides minimal developer leverage. Today’s
Windows management GUI tools are developed in the same way that a full blown application is.
They have GUI code, domain logic/constraint enforcement, and API access to local and remote
managed objects. Management GUI services are largely limited to a UI container which facilitates
multiplexing multiple tools and a certain level of integration. This approach requires a sophisticated
developer and an exhaustive test matrix. Because much of the domain logic and constraint
enforcement is embedded into the GUI, it is common for the command lines to expose a subset
of the functions of a GUI. The traditional approach works against automation.

Monad takes a different approach providing a rich set of management oriented services for
developing management GUI tools. These services allow management GUIs to be layered on top
of the scripting engine and Cmdlets. This provides auditing, macro record/playback and integrated
GUI/command line tools. This decreases the skill level required to develop a management GUI by
simplifying both the access to and control of management objects and by providing transparent
remoting for free. It also allows users to see the scripts run by GUI interactions which helps them
learn the automation layer and create their own automated scripts. The layering reduces the test
matrix by leveraging the testing done on the command line and scripts and only needing to test the
GUI paths to invoke those functions. The management GUI can also expose its inner workings via
Cmdlets which provides developers, testers, and support easy access to the internal state and control
of the GUI for debugging/diagnostics/automated test.

Notes:
⁶⁴PowerShell never really went with specific base classes for these different scenarios, but this is the origin of PowerShell’s standardized

list of verbs to be used in cmdlet names. This concept also drove the creation of the PSProvider and PSDrive abstraction, wherein any data
store could be exposed as a “disk drive,” thus enabling a standardized set of commands to manipulate any data store so exposed.

Chapter 5 - The Monad Automation
Model (MAM)

Monad defines a highly leveraged automation model for applications. The model factors out
common functions so they can be implemented once in the runtime environment. This provides
both leverage for the developer and consistency for the administrators. The incremental cost to
develop and test application-specific functions is quite low compared to the traditional methods.

Developers express an automation model to Admins as a set of user-friendly nouns and verbs. The
developer implements these by subclassing a set of base automation .Net classes and annotating them
with automation attributes to produce a set of Cmdlets. The MSH engine exposes these Cmdlets as
APIs and a set of commands. Administrators and tool developers now get a mainstream way to
uniformly access the automation of every aspect of the operating system.

Chapter 5 - The Monad Automation Model (MAM) 13

5.1 - An Example

Imagine the developer who needs to expose the Windows eventlog for reporting automation. The
developer decides how to structure the automation in terms of nouns and verbs (“Get-EventLog”).
Monad provides strong guidance on this subject. The developer then writes a CmdLet (in C#,
VB.NET, COBOL, etc) to expose this function.

A CmdLet might look like this⁶⁵:

Example 3

At first glance it might appear that the Admin is not going to get much use from this code but nothing
could be further from the truth. Using the CmdNoun and CmdVerb attributes automatically registers
this CmdLet as the command “Get-EventLog” with a single parameter “LogName”. The Admin then
uses this command along with a set of base utility commands to compose a rich set of scenarios:

What is filling up my application log?⁶⁶

Example 4

Why is MsiInstaller filling up my log?

⁶⁵Briefly, during development, PowerShell’s “script cmdlets” (now, “advanced functions”) did have a syntax similar to this. In C#, cmdlet
source code still looks a lot like this.

⁶⁶ORIGINAL: “Get-EventLog application” is provided by the sample code above and the rest come from theMonad base commands. “Group
source” counts the number of objects that have the same value for a particular property (i.e. how many times did a particular source show
up?). “Select -First 5” truncates the set of objects to only have the first 5. “Format-Table” formats the objects and their properties a table

Chapter 5 - The Monad Automation Model (MAM) 14

Example 5

By changing the last CmdLet in the pipeline, this information can be output in XML, CSV, LIST,
HTML, EXCEL or any other format.

Is my eventlog usage regular across the week?

Example 6

The admin can add additional Cmdlets to the pipeline to filter out only those events that where
generated on Tuesday and then find out which events occur most on that day ($ Get-EventLog

application |Where {$_.TimeWritten.DayofWeek -eq "Tuesday"} |Group EventID). Having
found that the most frequent event on Tuesdays, they can easy filter the log for that event and
determine the distribution of that event across the days of the week. ($ Get-EventLog application

|Where {$_.EventID -eq 131080} |Group {$_.TimeWritten.DayofWeek})

Monad requires a small amount of CmdLet⁶⁷ code to be integrated into the runtime environment
and take advantage of its rich set of functions and utilities to provide a powerful and relevant set of
administrative functions. While this example focused on an ad hoc investigation, it is obvious how
this investigation could lead to a set of automated nightly reports. This example is a narrow scenario;
comprehensive Cmdlets would need to provide a full range of verbs, have the input extensively
checked, and perform error handling. Still, the savings in development and test are dramatic.

⁶⁷Note that even in this document, Snover wasn’t consistent about “CmdLet” versus “Cmdlet.” Today, “cmdlet” is the standard. His original
idea was to emphasize that a “cmdlet” wasn’t a “full command” with all the parsing and whatnot a traditional command implemented; instead,
it was a portion of a command, with much of the overhead being provided by the automation engine’s base classes.

Chapter 5 - The Monad Automation Model (MAM) 15

5.2 - Leveraging .Net

Developers use .Net attributes to offload work to the runtime environment⁶⁸. The general philosophy
of Monad is to implement things once and then use them everywhere. A rich set of declarative
attributes direct the Monad runtime to perform actions on behalf of the developer. This transfers the
responsibility for writing and testing this code as well as for interacting with the user during error
conditions and producing and localizing error messages.

Monad defines automation attributes in the following areas:

Parsing Guidance These tell the parser how to map user input to the CmdLet
Request Object. E.g. how to map parameters to properties,
or whether a qualifier is mandatory.

Data Generation These tell the new shell to process the user input to
generate the actual data. E.g. filename globbing. There will
also be globbers for hostnames, ipaddrs, registrykeynames,
ProcessNames, etc.

Data Validation These express validation rules on the input data. E.g.
cardinality of the data, the min/max values of the data, etc.

Encoding Directives These convey how to encode the processed user input into
data objects. E.g. a CmdLet may want an array of
StreamWriters instead of an array of filenames.

Object Processing Perform a set of common functions on common datatypes.
E.g. perform a ToLower() on strings.

Visibility/Applicability These provide predicates for visiblity/applicablity. E.g.
Cmdlets can be tagged with the Machine and User Roles. If
a machine does not have the DHCP Server Role, the DHCP
server commands will not be visible by default.

Documentation These provide utilities information about the element. E.g.
Help

Test These provide hints to utilities to facilitate the auto
generation of Test Vectors.

Notes
⁶⁸Meaning, a .NET developer can tell the .NET runtime to perform certain standardized tasks. You see this a lot in PowerShell: for example,

a function can declare a parameter as mandatory, and the shell will enforce that attribtue rather than the function developer having to write
logic to do so.

Chapter 6 - The Monad Shell (MSH)
Monad provides a runtime environment for creating highly consistent, powerful, discoverable, and
secure APIs, command lines and GUIs by creating pipelines of Cmdlets. This capability is delivered
as a .Net class which can be embedded in a number of “hosts” which expose this functionality to the
user. The term MSH refers to both the runtime environment and the host that exposes that to the
use as a command line interactive shell.

6.1 - Pipelines of .Net Objects

Monad takes user input, builds a pipeline of Cmdlets for each of the commands, parses and encodes
the user input for each command into a CmdLet Request Object (CRO). The script execution engine
then sequences the pipeline. The first Cmdlet is invoked and passed its CRO as a parameter. This
Cmdlet returns a set of .Net objects which are then processed and passed to the next Cmdlet along
with its CRO and so on until the pipeline is complete.

Pipelines

Passing .Net objects to Cmdlets instead of text streams allows reflection-based utilities to provide a
function for any .Net object. In the example above, theWHERE CmdLet filters a set of objects based
upon a test of those object’s properties. It takes objects of any type (e.g. Processes, Files, Disks, etc)
and queries for its type using the .Net reflection APIs. Using the Type, it queries for the existence of

Chapter 6 - The Monad Shell (MSH) 17

the property specified by the user (“HandleCount”). It uses this information to query each object for
the value of that property and performs the test on that property and to filter the object appropriately.

The same mechanism is used by the SORT CmdLet to sort a set of objects and the FORMAT-
TABLE CmdLet to display the properties of a set of objects as a table. Monad’s utilities facilitate
factoring common functions out of the Cmdlets which saves costs for the developer and increases
power/consistency for Administrators.

Integrating legacy commands⁶⁹ is trivial because text streams are merely one type of .Net Object
stream. That said, once rendered into text, you lose the ability to operate upon it as a rich reflection-
based object and are back into the world of prayer based parsing.

6.2 - Monad Runtime Environment Components

The diagram below illustrates the major components of the Monad Runtime Environment:

Runtime

6.2.1.1 - The Parser

TheMonad parser is used by all Cmdlets and ensures a consistent syntax. It is responsible for parsing
user input for the script execution engine. When a user enters a command line, the Parser maps the
command to a CmdLet method and it’s Request Object. The fields and attributes of the request object

⁶⁹ORIGINAL: Msh will be able to seamlessly invoke legacy commands and legacy shells will be able to seamless invoke Msh CmdLets.
(Msh will provide a mechanism to export CmdLets for access from the legacy shells) [In fact, PowerShell never implemented an easy way for
legacy commands to invoke cmdlets]

Chapter 6 - The Monad Shell (MSH) 18

are used to parse the rest of the command line, generate any additional information (e.g. globbing),
validate the input, and encode those values into the request object.

In performing this process, the parser augments the metadata provided by the Request Object with
metadata provided by 3rd party policy providers. For instance, a request object may indicate that it
can accept up to 16 nodenames and that the names must resolve to an IPv4 address. A policy can
not change those directives but could add a directive indicating that the nodes must be currently
responding to an ICMP ping (e.g. IsAlive).

6.2.1.2 - The Script Execution Engine

The Monad script execution engine sequences the Cmdlets and ensures a consistent runtime
experience. It is responsible for taking the pipelines encoded by the parser and performing all the
operations required to sequence them to completion. If the actions need to occur on a remotemachine
or a set of remote machines, it coordinates with the MRS⁷⁰. It logs all activities to the audit log. The
execution engine looks at the incoming datastream and finds the correct properties to bind on a
CmdLet (a CmdLet might have multiple parametersets to take advantage of different types of data).
The output from a CmdLet is then gathered, potentially processed (converted, batched, etc), and
passed on to the appropriate properties of the next CmdLet. Since the runtime environment can
be embedded in multiple hosts (e.g. command line, GUI, etc.), it is important that a CmdLet never
directly communication with the user. The script execution engine mediates this activity between
the CmdLet and the various hosts.

6.2.1.3 - The Cmdlets

Cmdlets perform actions. There are four types of Cmdlets: 1) Base 2) Host 3) Platform and 4) User.
Base Cmdlets will work in any .Net environment such as Sort, Where, Group etc. Platform Cmdlets
are those that are dependant upon a particular platform (XP, Smart Phone, or Compact Framework)
and are not available on other platforms.HostCmdlets are those that are provided by the application
that embeds the Monad runtime environment. For instance msh.exe, or admin GUI that expose
Cmdlets specific to that host (e.g. Change a font, close a window, etc).UserCmdlets are those written
by the User. These can be written in any language (C#, VB.NET, etc) but most will be written in MSH
(the shell language).

The unique identifier for these Cmdlets is their .Net Type (e.g. System.Command.ProcessCmdLet).
While this identifier can always be used to invoke the CmdLet, it is long and unfriendly. As such,
CmdLet authors are required to provide Friendly names through attributes.

It will be fairly common and easy for higher order Cmdlets to be implemented by getting a set of
data and then using theMonad runtime to invoke a script on that data, and then returning the results
of that script.

⁷⁰https://www.penflip.com/powershellorg/monad-manifesto-annotated/blob/master/chapter-8-the-monad-remote-script-mrs.txt

https://www.penflip.com/powershellorg/monad-manifesto-annotated/blob/master/chapter-8-the-monad-remote-script-mrs.txt
https://www.penflip.com/powershellorg/monad-manifesto-annotated/blob/master/chapter-8-the-monad-remote-script-mrs.txt

Chapter 6 - The Monad Shell (MSH) 19

6.2.1.4 - The Extended Type Reflector

The power of Monad is its ability to leverage .Net reflection. The problem is that there are important
objects that are encoded in ways that denude reflection of its power. When you reflect against ADO
datatables, you find out that they have a property called Columns. What we need are the names of
the columns but these are encoded as values. A similar problem exists with WMI, Active Directory,
and XML. The extended type reflector is designed to address such issues.

6.2.1.5 - The Type Annotation and Extension System

Dealing with raw objects provides both too much and too little information. It is the job of the type
annotation and extension system to resolve this paradox. It provides a mechanism for 3rd parties
to define sets of properties (e.g. properties associated with performance, configuration, resource
consumption, or dependencies) and give the set a public name. This allows the user to give a name
instead of having to specify each and every property. E.g. “Format-Table resources” vs. “Format-
Table name ,pid, workingset, handlecount, virtualmemory, privatememory”.

Monad provides access to objects and the methods on those objects. However the intrinsic methods
of an object represent a very small number of the interesting things that users want to do. The
type extension mechanism allows 3rd parties to register brokered methods on those objects. These
methods can be accessed using the same syntax as the native ones but this system will then dispatch
them to the appropriate 3rd party method passing the original object as a parameter.

6.2.1.6 - The Remote Agent

Users will be able to run scripts on remote machines via Web Service requests to Remote Agent host.
This host will embed the runtime and respond to requests received via Soap/HTTP or DIME/TCP.
Users will be authenticated and their activities authorized (either by ID or ROLE). Requests and
replies will be encoded in a way that allows cancellation and allow tracing local activities back to
specific requests in remote audit logs.

When a script is complete, its return objects are serialized by value for transmission across the wire.

6.2.1.7 - Security

Monad could well be one of the most secure shell environments ever created. All interesting actions
are recorded into an audit log. The code identification facilities provided by .NET significantly
reduce exposure to one of the most common security exposures in a shell environment: Trojans.
Signing, strong names and hashes in system policy will be used to identify which utilities are
legitimate and approved and also prevent known Trojans from being executed.

In sum, the Monad shell will provide both reduced security exposures and far better detection and
remediation of security breaches.

Chapter 6 - The Monad Shell (MSH) 20

6.2.1.8 - MSH Host

MSH is a .Net assembly which can be embedded into any executable host to provide script execution
and access to Cmdlets. Hosts are able to determine which subset of Cmdlets are made available to the
user. The most common case will be that a Host exposes all Base Cmdlets (e.g. sort, where, etc), all
of its Host Cmdlets (e.g. outlook would expose Cmdlets for dealing with mailboxes and messages),
and an appropriate subset of the Platform Cmdlets (Cmdlets dealing with processes, disks, network
adapters, etc).

MSH is also a stand alone executable which hosts the script execution engine and provides a rich
interactive experience. While providing a compelling vt100-type experience, MSH will leverage
the capabilities of a PC to provide world class analytics. MSH provides rich, graphical intellisense
capabilities for command completion. Data can be output in graphical formats to leverage the PCs
interaction and visualization capabilities.

6.3 - MSH Scripting Language

MSH provides a full featured scripting language using the functions and syntax of the POSIX Shell
model (flow control, faulting handling, variables, function definition, scoping, IO redirection, etc)
as a starting point. These are then modified and expanded upon to either improve the programming
experience, take advantage of new functionality or provide a glide path to C# . The goal is that UNIX
admins working with Windows will find it easy to learn and migrate their skills to MSH.

In addition to writing traditional functions, users can use the scripting capabilities of MSH to write
their own Cmdlets and to add or override verbs to existing CmdLet Nouns.

Notes

Chapter 7 - The Monad Management
Models (MMM)
Monad helps application developers design the administrative experience by providing a set of
management models. A MMM is a rich set of scenario based automation base classes and a tool or
set of tools that use those classes to perform a particular management scenario. These base classes
cover themajor management scenarios including: Navigation, Diagnostics, Configuration, Lifecycle,
and Operations. The base classes provide a common way of performing these tasks across multiple
resource types. This allows the admin to learn a model for managing a particular scenario and then
apply that model to a wide range of problems and new situations. Developers pick the appropriate
set of base classes, derive their own classes from these, and implement the appropriate methods for
their resource types. The base classes provide the following:

1. A set of verbs for the scenario (e.g. Navigation has the verb set: pwd, cd, dir, pushd, popd, dirs)
2. A set of base request objects which define common qualifiers. E.g. If the scenario refers to a

remote machine, the base request object would define a common qualifier -MACHINENAME.
This discourages people from using the terms: NODE, SERVER, HOST, etc.

3. A set of exceptions and error messages for that scenario. E.g. There will be a standard
schematized exception for “Resource unavailable” so that we don’t end up with dozens of
variations [which exist today].

4. Common solutions to common scenario problems. E.g. the base classes will provide a standard
solution to the problem of someone accidentally asking for too much information [get all
objectsin LDAP].

Microsoft will localize all the user visible portions of these scenarios (Verbs, qualifiers, error
messages, etc) so ISVs can significantly reduce their development costs by leveraging these base
classes. In addition to these benefits, Monad provides UI controls to graphically display and interact
with implementations of these base classes. Monad will ship with MMC plug-in tools that host
these UI controls but ISVs or in-house developers can host the controls in their own management
UIs. Since these controls will be accessing well defined and promulgated data and control interfaces,
3 rd parties can create replacement controls as well.

An Example

Navigation provides a example of a Management Model. There will be a base class for all Cmdlets
that want to do Navigation. This will define the verbs (pwd, cd, pushd, dirs, popd, dir), common

Chapter 7 - The Monad Management Models (MMM) 22

error messages, and provide common implementations for common problems (pushd, dirs, and popd
will be implemented once). That base class can then be subclassed to provide a consistent admin
experience for a minimal amount of code. Once the admin learns how to use this model, they will
be able to use to across a wide range of resources. Navigating the filesystem will be the default case:

Example 1

The same commands can be used to explore the Registry:

Example 2

The same commands can be used to explore the Help system, Active Directory, SQL databases, WMI
or other namespaces.

Chapter 8 - The Monad Remote Script
(MRS)
Monad provides a Web Services based mechanism to execute scripts on remote systems. The scripts
can be run on a single or large number (many thousands) of remote systems. The results of the
scripts can be processes as each individual script completes or the results can be aggregated and
processed en-masse when all have finished. A script can be executed in BestEffort or Reliable mode.
BestEffort scripts are run from the existing process and if that process terminates, no effort to clean
up the remote scripts is done and any outstanding results are lost. Reliable mode scripts are persisted
to a local SQL store and a service handles the execution of the script. The user can log of out the
machine and the service continues to process the script. The user can log back in and get the results
of that job sometime in the future.

Chapter 9 - The Monad Management
Console (MMC)
Monad provides a rich set of management framework service Cmdlets to facilitate to build
management consoles. These services reduce development and test costs to produce admin UIs and
consoles while enabling an integrated and admin experience. The services are used to produce an
in-the-box management console but can also be used by third parties or in-house IT to implement
their ownmanagement console. The goal is to be able to provide 50-70% of a generic management
GUI tool for free just by building the right type of Cmdlets. Monad provides the following resources
and services:

1. A script execution environment which provides GUIs uniform and consistent access to local
and remote resources.

2. Integrated GUI and command line environment so that GUI interactions are displayed in a
command line console. Users can use this to learn the automation layer and can also directly
execute command line actions as well. This mechanism is also leveraged to provide macro
record/playback.

3. Application-specific scripting. The application can expose its inner workings (e.g. buttons,
displays, internal data structures etc) via Cmdlets to allow application specific scripting,
debugging, and supportability.

4. Base UI controls associated with specific MMMs. (E.g. Navigation controls, lifecycle controls,
diagnostic controls).

5. Rich set of base error messages which will be localized by MMC.
6. Declarative UI framework to allow metadata driven custom management GUIs.

Chapter 10 - Value Propositions
• For application developers who need to expose their administrative functions as command
lines and GUIs, Monad provides a highly productive development framework.
– Unlike building stand-alone command lines, Monad provides most of the common func-
tions including a parser, a data validator/encoder, error reporting mechanisms, common
functions like sorting/filtering/grouping/formatting/outputting and a set of management
models which provide common verb sets, error messages and solutions to common
problems and tools.

– Unlike WMI/WMIC, Monad provides a simple programming model. Cmdlets are merely
attributed .Net classes.

– Unlike MMC, Monad provides strong guidance on how to perform management tasks and
large benefits (reduced coding/testing) for those that follow that guidance.

• For application testers who want to ensure that the administrative command lines and GUIs
operate correctly, Monad reduces the amount of code that needs to be tested and increases the
productivity of the test process.
– Unlike building stand-alone command lines, Monad provides a common implementation
of most common functions minimizing the amount of application code to develop and test.

– Unlike traditional management GUIs, Monad layers GUIs on top of Cmdlets so the bulk
of the GUI core will already be tested when the command line is tested. Monad will also
make it easier to test GUIs by exposing the inner workings of the GUI through a command
line shell and by the ability to drive the GUI controls and code paths through command
line scripts.

• For power users who want to interact with the system through command line interfaces,
Monad provides a highly consistent set of commands and utilities as well as an environment
that allows the creation of custom admin tools (i.e. not scenario bound).
– Unlike cmd.exe, sh, ksh, csh, etc and traditional commands and utilities, Monad provides
a common parser for all CmdLet and utilities ensuring syntactic consistency and common
input error handling and messaging across all Cmdlets and utilities.

– Unlike cmd.exe, sh, ksh, csh, etc and traditional command and utilities, Monad provides a
strong prescriptive guidance and enforcement of CmdLet naming and error handling and
provides a set of scenario automation base classes which make it easy and valuable for
developers to follow those guidelines.

– Unlike cmd.exe, sh, ksh, csh, etc and traditional command and utilities, Monad replaces
pipelines passing text with pipelines passing .Net objects which allows utilities to use the
.Net reflection APIs to operate directly against the objects without the need to perform
error-prone text parsing and object lookup.

Chapter 10 - Value Propositions 26

• For Administrators that want to develop management scripts to automate the management
of their systems, Monad provides a highly productive model for learning and effecting that
automation.
– Unlike cmd.exe, the Monad shell is based upon and extends the Bourne Shell syntax and
control structures facilitating the skill transfer of Unix Admins.

– Unlike sh, ksh, csh, etc and traditional command/utilities, Monad uses .Net objects instead
of text as an integration mechanism allowing easier and more precise integration.

– Unlike sh, ksh, csh, etc and traditional command/utilities, Monad exposes a rich error
model leveraging .Net objects to expose precise details of what went wrong, where, when,
and what objects where processed/unprocessed.

– Unlike traditional management GUIs, Monad GUIs allow Admins the ability to see the
inner workings of the GUI by exposing their actions via a command line console so that
the Admin can learn the automation surface by using the GUI.

• For GUI users who want to automate their operations, Monad facilitates learning the
automation layer by exposing the shell equivalents of GUI interactions.
– Unlike traditional management GUIs, Monad GUIs are layered on top of Cmdlets so every
function available in the GUI is also available via the command line. Unlike traditional
management GUIs, Monad GUIs allow Admins the ability to see the inner workings of
the GUI by exposing their actions via a command line console so that the Admin can see
the command line equivalent of their GUI interactions.

	Table of Contents
	The Monad Manifesto - Annotated
	Chapter 1 - What is Monad?
	Chapter 2 - Problem
	Chapter 3 - The Traditional Approach to Administrative Automation
	Chapter 4 - New Approaches
	4.1 - A New Approach to Building Commands
	4.2 - A New Approach to Composing Solutions
	4.3 - A New Approach to Management Models
	4.4 - A New Approach to Management GUI Tools

	Chapter 5 - The Monad Automation Model (MAM)
	5.1 - An Example
	5.2 - Leveraging .Net

	Chapter 6 - The Monad Shell (MSH)
	6.1 - Pipelines of .Net Objects
	6.2 - Monad Runtime Environment Components
	6.3 - MSH Scripting Language

	Chapter 7 - The Monad Management Models (MMM)
	An Example

	Chapter 8 - The Monad Remote Script (MRS)
	Chapter 9 - The Monad Management Console (MMC)
	Chapter 10 - Value Propositions

