

Why PowerShell?

The DevOps Collective, Inc.

This book is for sale at http://leanpub.com/whypowershell

This version was published on 2018-10-28

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2018 The DevOps Collective, Inc.

http://leanpub.com/whypowershell
http://leanpub.com/
http://leanpub.com/manifesto

Also By The DevOps Collective, Inc.
Creating HTML Reports in Windows PowerShell

A Unix Person’s Guide to PowerShell

The Big Book of PowerShell Error Handling

DevOps: The Ops Perspective

Ditch Excel: Making Historical and Trend Reports in PowerShell

Secrets of PowerShell Remoting

The Big Book of PowerShell Gotchas

The Monad Manifesto, Annotated

Windows PowerShell Networking Guide

The PowerShell + DevOps Global Summit Manual for Summiteers

Why PowerShell? (Spanish)

Secrets of PowerShell Remoting (Spanish)

DevOps: The Ops Perspective (Spanish)

The Monad Manifesto: Annotated (Spanish)

Creating HTML Reports in PowerShell (Spanish)

The Big Book of PowerShell Gotchas (Spanish)

The Big Book of PowerShell Error Handling (Spanish)

DevOps: WTF?

PowerShell.org: History of a Community

http://leanpub.com/u/devopscollective
http://leanpub.com/creatinghtmlreportsinwindowspowershell
http://leanpub.com/aunixpersonsguidetopowershell
http://leanpub.com/thebigbookofpowershellerrorhandling
http://leanpub.com/devopstheopsperspective
http://leanpub.com/ditchexcelmakinghistoricalandtrendreportsinpowershell
http://leanpub.com/secretsofpowershellremoting
http://leanpub.com/thebigbookofpowershellgotchas
http://leanpub.com/themonadmanifestoannotated
http://leanpub.com/windowspowershellnetworkingguide
http://leanpub.com/summiteermanual
http://leanpub.com/why-powershell-spanish
http://leanpub.com/secrets-of-powershell-remoting-spanish
http://leanpub.com/devops-the-ops-perspective-spanish
http://leanpub.com/monad-manifesto-annotated-spanish
http://leanpub.com/creating-html-reports-in-powershell-spanish
http://leanpub.com/big-book-of-powershell-gotchas-spanish
http://leanpub.com/big-book-of-powershell-error-handling-spanish
http://leanpub.com/devopswtf
http://leanpub.com/powershellorghistoryofacommunity

Contents

Why PowerShell? . 1

A Brief Overview . 2

Why Scripting? Why a Shell? . 3

Why PowerShell? . 4
PowerShell is both a command-line shell and scripting language 4
PowerShell can interact with a dizzying number of technologies. 4
PowerShell is object-based. 5
PowerShell isn’t going away. 5
Consolidate and multiply your learning . 5
In Windows, PowerShell’s really the only option . 5

The Business Story . 7

Where can you learn more? . 8

Why PowerShell Remoting? (While We’re Answering “Whys”) 9
Comparing Remoting to what came before . 9
But here’s the best reason . 10

Why PowerShell?
By Warren Frame and Don Jones

An incredibly concise look at why Windows PowerShell is important, from both a technical and
business perspective.

This guide is released under the Creative Commons Attribution-NoDerivs 3.0 Unported License. The
authors encourage you to redistribute this file as widely as possible, but ask that you do not modify
the document.

Was this book helpful? The author(s) kindly ask(s) that you make a tax-deductible (in the US; check
your laws if you live elsewhere) donation of any amount to The DevOps Collective¹ to support their
ongoing work.

Check for Updates! Our ebooks are often updated with new and corrected content. We make them
available in three ways:

• Our main, authoritative GitHub organization², with a repo for each book.
• Our GitBook page³, where you can browse books online, or download as PDF, EPUB, or MOBI.
Using the online reader, you can link to specific chapters.

• On LeanPub⁴, where you can download as PDF, EPUB, or MOBI (login required), and
“purchase” the books to make a donation to DevOps Collective. You can also choose to be
notified of updates.

GitBook and LeanPub have slightly different PDF formatting output, so you can choose the one you
prefer. LeanPub can also notify you when we push updates. Our main GitHub repo is authoritative;
repositories on other sites are usually just mirrors used for the publishing process. GitBook will
usually contain our latest version, including not-yet-finished bits; LeanPub always contains the most
recent “public release” of any book.

¹https://devopscollective.org/donate/
²https://github.com/devops-collective-inc
³https://www.gitbook.com/@devopscollective
⁴https://leanpub.com/u/devopscollective

https://devopscollective.org/donate/
https://github.com/devops-collective-inc
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective
https://devopscollective.org/donate/
https://github.com/devops-collective-inc
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective

A Brief Overview
PowerShell enthusiasts often find themselves explaining why someone with responsibilities on the
Microsoft side of the IT shop should learn PowerShell. We decided to write this as a reference going
forward.

We wonâ€™t be arguing for PowerShell over other Microsoft languages such as VBScript or batch,
or general purpose languages such as Python or Perl. There is a place for all of these languages, but
if you work with the Microsoft and surrounding ecosystems, PowerShell is an important language
to learn.

What’s also important to understand is that Microsoft has made an enormous commitment to
PowerShell. It isn’t going away, and indeed the company is building more and more of their
management solutions on top of it. To a degree, Microsoft is even backing off from building
management tooling, knowing that you can use PowerShell to build your own tools. That’s
significant.

But let’s move on.

Why Scripting? Why a Shell?
Before we dive into PowerShell itself, letâ€™s tackle the importance of scripting and automation,
an integral facet of PowerShell.

Youâ€™ve probably seen this XKCD comic⁵ or something similar to justify scripting. While saving
time is certainly a factor behind the importance of scripting and automation, it is hardly the only
justification.

Here are a few others to consider:

• Consistency. A scripted solution will run the exact same script every time. No risk of typos,
forgetting to complete the task, or doing the task incorrectly. Reduce human error.

• Audit trail. There are many tasks where having an audit trail would be helpful, perhaps
including what task was performed, important results, errors that occurred, when the task
ran, who ran it, and so forth. Scripts can provide this trail, and in PowerShell v5 and later, the
shell itself features extensive logging capabilities.

• Modular code. You might spend more time on a particular function than time savings justify,
but you can generally re-use or borrow ideas from the code later.

• Documentation. Is there documentation for the task? Is it up to date? A well written and
commented script can generally serve as a helpful base level of documentation that might not
exist for a manual task. In some cases, the script can document the process that it automates,
helping to preserve institutional knowledge.

• Education. Administrators who can automate tasks are almost always more well-versed in
the technology as a result. That makes them better planners, architects, troubleshooters, and
operators, all of which convey benefit to the organization.

• Delegation. With a scripted solution, you can typically delegate more functions closer to
the teams best equipped to handle them. With PowerShell v3 and later specifically, scripts
can enable extremely granular delegation of tasks, helping the overall IT team become more
efficient and responsive.

The moral of the story is that scripting and automation is important, which is just one factor behind
the value of learning PowerShell.

⁵http://xkcd.com/1205/

http://xkcd.com/1205/
http://xkcd.com/1205/

Why PowerShell?
Microsoft describes PowerShell as “a task-based command-line shell and scripting language… built
on the .NET Framework.” What is so great about PowerShell? Why should you use it?

PowerShell is both a command-line shell and scripting
language

Fight fires quickly using existing or custom PowerShell commands or scripts at the shell, no need to
compile code. Develop your code at the command line before creating a function or script around
it. Write quick and dirty scripts that you will use a single time or a handful of times. Write formal,
readable, production level scripts that will maintain your services for years.

What is the cost of this investment? Learning PowerShell. Pretty reasonable, considering you will
likely need to do so regardless of your current language of choice, assuming you work with the
Microsoft ecosystem.

PowerShell can interact with a dizzying number of
technologies.

The .NET Framework, the Registry, COM, WMI, ADSI. Exchange, Sharepoint, Systems Center,
Hyper-V, SQL. VMware vCenter, Cisco UCS, Citrix XenApp and XenDesktop. REST APIs, XML,
CSV, JSON, websites, Excel and other Office applications. C# and other languages, DLLs and other
binaries, including Linux or Unix tools. A language that can work with and integrate these various
technologies can be incredibly valuable.

Windows is not text based. Sooner or later you will need to do something that you can’t do with
-nix tools and other text based languages. Many of the technologies that PowerShell can interact
with simply do not have text based interfaces, and may not even be directly accessible from more
formal languages like Perl or Python.

The moral here is that PowerShell is the best “glue” Microsoft has ever provided us for tying together
disparate systems. It’s better than previousWindows-based shells because it understands, and works
with, the API-based nature of Windows itself, which is vastly different from what previous text-
based shells did.

Why PowerShell? 5

PowerShell is object-based.

This gives us incredible flexibility. Filter, sort, measure, group, compare or take other actions on
objects as they pass through the pipeline. Work with properties and methods rather than raw text.

If you have spent time deciphering and programmatically working with text based output, you know
how frustrating it can be. What delimiter do I split on? Is there even a delimiter? What if a particular
result has a blank entry for a column? Do I need to count characters in each column?Will this count
vary depending on the output? With objects, this is all done for you, and makes it quite simple to
tie together commands and data across various technologies.

PowerShell isn’t going away.

Microsoft is putting its full weight behind PowerShell.

PowerShell support is a requirement in the Microsoft Common Engineering Criteria, and a Server
product cannot be shipped without a PowerShell interface. That means very few Microsoft server
products can’t be managed by PowerShell - and the few that can’t, will be able to soon.

Vendors other than Microsoft have strong support for PowerShell. This includes IBM, Cisco, Citrix,
VMware, NetApp, Dell, and dozens more.

In many cases Microsoft uses PowerShell to build the GUI management consoles for its products.
Some tasks can’t be performed in the GUI and can only be completed in PowerShell. This is a big deal:
In an increasing number of situations, you can’t manage the product fully unless you use PowerShell.
That applies to cloud-based offerings like Azure and Office 365, too.

Consolidate and multiply your learning

Your reward for learning PowerShell is the improved ability to control and automate the many
technologies it integrates with. You can use the same set of commands to filter, export, redirect,
modify, extend, and perform actions against output for all of these technologies. You can pick up
PowerShell skills and take them in any direction you need - Hyper-V, vCenter, SQL, AD, XenApp,
and more.

Your reward for learning specific tools or executables such as net.exe or schtasks.exe, is the ability
to work with those specific tools. With PowerShell, your learning investment blossoms into an
enormous ecosystem of capability.

In Windows, PowerShell’s really the only option

VBScript is deprecated, and you’re not going to see further development. VBScript was already
anemic in terms of the things it could “touch,” making it a poor “glue” for connecting systems and
processes.

Why PowerShell? 6

And nothing else even came close to VBScript. Python, Perl, you name it - they’re great on Linux,
a predominantly text-based OS, but they were nigh-useless on Windows, since they couldn’t access
the many and varied APIs Windows uses for management.

PowerShell consolidates all of those APIs into a single, largely-consistent interface that’s focused on
systems operations and administration.

The Business Story
If you’ve ignored PowerShell up until now, or were skeptical about it, let’s look at what Microsoft
has done.

In version 1, PowerShell emerged as a the first management interface specifically designed for
administrative automation.

In version 2, PowerShell gained native remote management capabilities, enabling remote man-
agement of any server or client running PowerShell. PowerShell’s “reach” extended to hundreds
of management APIs, enabling real-world management. The product also matured a deceptively
simple, powerful scripting language that can be used to build professional-grade units of automation.

In version 3, PowerShell learned to run long-running tasks in a disconnected, stateless fashion -
called workflows. The product’s reach extended even further, covering all major Microsoft server
platforms, and pushing into Microsoft’s cloud offerings. By this version, PowerShell was a very real
thing, so much so that many Microsoft native GUIs began to use PowerShell “under the hood.”

In version 4, PowerShell was extended with even more “reach,” and gained a new technology:
Desired State Configuration. DSC lets administrators describe, in more-or-less plain text, how a
computer should be configured. Leveraging the existing investment in PowerShell, DSC then puts
the machine into that state, and keeps it there.

In version 5, PowerShell matured DSC and extended its “tool making” capabilities into professional
developer space. With support in Visual Studio, PowerShell started to span a much broader spectrum
of user, from entry-level administrators to advanced developers.

The point is that Microsoft has clearly been building PowerShell since its v1 release in 2006. They’ve
done so in a way that they’ve never done before in languages like VBScript, and they’ve done so
while maintaining consistency and efficiency.

What’s more, PowerShell has inspired a broad ecosystem of supporting vendors, and an enthusiastic
global community. Administrators are, more than ever, able to get assistance, answers, and even
ready-made solutions from those vendors and that community.

Where can you learn more?
There is a wealth of information on PowerShell.

• Start at PowerShell.org⁶, a community-owned and operated web site that hosts a friendly
Q&A forum. The organization also offers numerous free ebooks⁷, runs the annual PowerShell
Summit⁸ event in North America and Europe, hosts a DSC GitHub repository, runs an annual
Scripting Games contest, and much more.

• Anyone with development or scripting experience should pick up PowerShell in Action v2⁹.
Itâ€™s written by the co-designer and principle author of PowerShell, Bruce Payette, and is
the standard reference. It provides the best depth you will get short of verbose articles on
the web, gives insight into some of the design decisions behind the language, and is perfectly
applicable today despite being written for PowerShell v2. Windows PowerShell for Developers
is more narrowly focused but a good read for the experienced.

• Those without scripting or development experience might want to start with lighter reading,
such as Learn Windows PowerShell in a Month of Lunches¹⁰.

• Want to learn on the fly? PowerShell includes everything you need to learn directly from the
shell. Get-Command, Get-Help, Get-Member, and Select-Object will get you exploring and
learning PowerShell.

• Prefer videos? Product inventor Jeffrey Snover and Jason Helmick hosted two free PowerShell
sessions that have proven quite popular: Getting Started with PowerShell 3.0¹¹ and Advanced
Tools and Scripting with PowerShell 3.0¹². Or, check out the PowerShell.org YouTube channel¹³,
featuring technical videos and session records from every PowerShell Summit event.

⁶http://powershell.org
⁷http://powershell.org/wp/ebooks
⁸http://powershellsummit.org
⁹http://www.manning.com/payette2/
¹⁰http://manning.com/jones3/
¹¹http://channel9.msdn.com/Series/GetStartedPowerShell3
¹²http://channel9.msdn.com/Series/advpowershell3
¹³http://youtube.com/powershellorg

http://powershell.org/
http://powershell.org/wp/ebooks
http://powershellsummit.org/
http://powershellsummit.org/
http://www.manning.com/payette2/
http://manning.com/jones3/
http://channel9.msdn.com/Series/GetStartedPowerShell3
http://channel9.msdn.com/Series/advpowershell3
http://channel9.msdn.com/Series/advpowershell3
http://youtube.com/powershellorg
http://powershell.org/
http://powershell.org/wp/ebooks
http://powershellsummit.org/
http://www.manning.com/payette2/
http://manning.com/jones3/
http://channel9.msdn.com/Series/GetStartedPowerShell3
http://channel9.msdn.com/Series/advpowershell3
http://youtube.com/powershellorg

Why PowerShell Remoting? (While
We’re Answering “Whys”)
Another big question that comes along is, “why should we enable PowerShell Remoting?”

First, understand a couple of things - which are going to seem a bit rude. Sorry. - PowerShell
Remoting has been around since 2008. If you’re seriously just asking yourself this now, then you’re
doing a poor job of managing your IT environment. Also released since 2008 were smart watches,
Microsoft (formerly Windows) Azure, the Tesla Roadster, Disney’s “Frozen,” affordable LED light
bulbs, and the iPhone 3G, 3GS, 4, 4S, 5, 5S, and 6 models. Just in case you missed those as well. -
Information technology is an industry of change. The perfectly reasonable decisions you made in
2003 are going to need to be periodically revisited, due to aforementioned change.

With that out of the way, let’s briefly talk about… ## What is PowerShell Remoting? Remoting is
simply a way for management tools on one computer to talk to services on another computer, so
that you can remotely manage those services.

Remoting is based on HTTP, and uses a protocol called WS-Management (WS-MAN). It requires
servers to have a single open port, and routes all incoming management traffic through that one
port. WS-MAN traffic can be logged, can be proxied through security servers (provided by third
parties), and can be completely encrypted by means of SSL.

Like all HTTP traffic, Remoting is essentially transmitting text back and forth. Remoting simply
specifies a way for that text to be laid out (predominantly in an XML variant) so that tools and
services can understand each other.

Remoting does not in any way affect the security of your network under default conditions. It
does not, by default, transmit usernames or passwords - encrypted or otherwise. In a non-domain
environment, you can create an environment where passwords would be transmitted, but it really
wants that to be encrypted by SSL, so you’d be using HTTPS.

Remoting doesn’t in any way give anyone special privileges. The technology literally can’t let
someone do something they don’t have permission to do, unless you’ve gone through a rather
complex setup for something called delegated administration. In that case, you can enable specific
users to perform specific tasks that they wouldn’t normally be able to - but only through the specific
channel and interface you’ve set up.

Comparing Remoting to what came before

Before Remoting, most Windows remote management was conducted over Remote Procedure Calls,
or RPCs. These usually employed port-hopping, making them incredibly difficult to manage through
a firewall. Contrast that with the one port you have to deal with in Remoting.

Why PowerShell Remoting? (While We’re Answering “Whys”) 10

A lot of organizations today simply install management tools on servers, and then use Remote
Desktop to “remotely manage.” That’s an incredibly poor idea, and is a major reason why Windows
Server take so many patches, so many reboots, and other maladies. The code needed to support a full
GUI, and therefore RDP, is massive - and that means patches are inevitable. Running management
tools on the server, usually under administrator credentials, is opening the door to an attack.

In short, most organizations seem to be worred about the security “implications” of PowerShell
Remoting. The implications are significant - Remoting ismuchmore secure than what you’ve been
doing. It’s also more efficient, imposes less overhead on servers, and lets servers run with a leaner
operating system that will require fewer patches, fewer reboots, and fewer service packs. Those
servers will also boot faster, run fewer processes, run fewer services, and consume less storage space
for the OS. Those servers will require less memory overhead for the OS, meaning you can pack more
of ‘em into a virtualization host. Sounds horrible, right?

But here’s the best reason

Quite simply, the main reason to enable Remoting is that you haven’t got any choice. Microsoft has
moved firmly in this direction, and enables Remoting by default on Windows Server 2012 and later.
The company disables Remote Desktop by default, which should tell you something.

Further, in Nano Server, logging onto the console isn’t even an option, whether you use Remote
Desktop or not. There is no local login. Remoting is literally your only option for managing the
server. That’s going to be the case going forward.

Running a Windows environment without enabling Remoting - at least on servers - is like driving
a car without wanting to depress the accelerator. It isn’t much fun, and you aren’t going to get very
far.

	Table of Contents
	Why PowerShell?
	A Brief Overview
	Why Scripting? Why a Shell?
	Why PowerShell?
	PowerShell is both a command-line shell and scripting language
	PowerShell can interact with a dizzying number of technologies.
	PowerShell is object-based.
	PowerShell isn’t going away.
	Consolidate and multiply your learning
	In Windows, PowerShell's really the only option

	The Business Story
	Where can you learn more?
	Why PowerShell Remoting? (While We're Answering ``Whys'')
	Comparing Remoting to what came before
	But here's the best reason

