

Windows PowerShell Networking Guide

The DevOps Collective, Inc.

This book is for sale at http://leanpub.com/windowspowershellnetworkingguide

This version was published on 2018-10-28

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2018 The DevOps Collective, Inc.

http://leanpub.com/windowspowershellnetworkingguide
http://leanpub.com/
http://leanpub.com/manifesto

Also By The DevOps Collective, Inc.
Creating HTML Reports in Windows PowerShell

A Unix Person’s Guide to PowerShell

The Big Book of PowerShell Error Handling

DevOps: The Ops Perspective

Ditch Excel: Making Historical and Trend Reports in PowerShell

Secrets of PowerShell Remoting

The Big Book of PowerShell Gotchas

The Monad Manifesto, Annotated

Why PowerShell?

The PowerShell + DevOps Global Summit Manual for Summiteers

Why PowerShell? (Spanish)

Secrets of PowerShell Remoting (Spanish)

DevOps: The Ops Perspective (Spanish)

The Monad Manifesto: Annotated (Spanish)

Creating HTML Reports in PowerShell (Spanish)

The Big Book of PowerShell Gotchas (Spanish)

The Big Book of PowerShell Error Handling (Spanish)

DevOps: WTF?

PowerShell.org: History of a Community

http://leanpub.com/u/devopscollective
http://leanpub.com/creatinghtmlreportsinwindowspowershell
http://leanpub.com/aunixpersonsguidetopowershell
http://leanpub.com/thebigbookofpowershellerrorhandling
http://leanpub.com/devopstheopsperspective
http://leanpub.com/ditchexcelmakinghistoricalandtrendreportsinpowershell
http://leanpub.com/secretsofpowershellremoting
http://leanpub.com/thebigbookofpowershellgotchas
http://leanpub.com/themonadmanifestoannotated
http://leanpub.com/whypowershell
http://leanpub.com/summiteermanual
http://leanpub.com/why-powershell-spanish
http://leanpub.com/secrets-of-powershell-remoting-spanish
http://leanpub.com/devops-the-ops-perspective-spanish
http://leanpub.com/monad-manifesto-annotated-spanish
http://leanpub.com/creating-html-reports-in-powershell-spanish
http://leanpub.com/big-book-of-powershell-gotchas-spanish
http://leanpub.com/big-book-of-powershell-error-handling-spanish
http://leanpub.com/devopswtf
http://leanpub.com/powershellorghistoryofacommunity

Contents

PowerShell Networking Guide . 1

Windows PowerShell Basics - Introduction . 2
So what are the basics of Windows PowerShell that I need to know? 2
Working with Windows PowerShell . 2

Windows PowerShell Basics - Security issues with Windows PowerShell 5
Running as a normal (non-elevated) user . 5
Launching PowerShell with Admin rights . 5

Windows PowerShell Basics - Using PowerShell cmdlets . 7

Windows PowerShell Basics - Supplying options for cmdlets 13
Using single parameters . 13

Windows PowerShell Basics - Using command line utilities 19

Windows PowerShell Basics - Working with help options . 20

Windows PowerShell Basics - Working with modules . 21

Working with Network adapters . 22

Identifying network adapters . 24
Using raw WMI to identify network adapters . 24
Using NetSh . 27
Using PowerShell on Windows 8 or above . 28

Enabling and disabling network adapters . 33
Using the NetAdapter module . 35

Renaming the network adapter . 38
Using WMI on Windows 7 and above . 39
Using the NetAdapter module . 40

Finding connected network adapters . 43
Using WMI . 43

CONTENTS

Requires -Version 2.0 . 46

> . 47

*** Entry point to script *** . 48
Using the NetAdapter module . 49

Network Adapter power settings . 51
Using NetSh . 52
Using the NetAdapter module . 53

Getting Network Statistics . 57
NetStat . 60
Performance Counters . 63

Resources . 68
Web Resources . 68

PowerShell Networking Guide
By Ed Wilson

Created by Microsoft’s “The Scripting Guy,” Ed Wilson, this guide helps you understand how
PowerShell can be used to manage the networking aspects of your server and client computers.

This guide is released under the Creative Commons Attribution-NoDerivs 3.0 Unported License. The
authors encourage you to redistribute this file as widely as possible, but ask that you do not modify
the document.

Was this book helpful? The author(s) kindly ask(s) that you make a tax-deductible (in the US; check
your laws if you live elsewhere) donation of any amount to The DevOps Collective¹ to support their
ongoing work.

Check for Updates! Our ebooks are often updated with new and corrected content. We make them
available in three ways:

• Ourmain, authoritativeGitHub organization², with a repo for each book. Visit https://github.com/devops-
collective-inc/

• Our GitBook page³, where you can browse books online, or download as PDF, EPUB, or MOBI.
Using the online reader, you can link to specific chapters. Visit https://www.gitbook.com/@devopscollective

• On LeanPub⁴, where you can download as PDF, EPUB, or MOBI (login required), and
“purchase” the books to make a donation to DevOps Collective. You can also choose to be
notified of updates. Visit https://leanpub.com/u/devopscollective

GitBook and LeanPub have slightly different PDF formatting output, so you can choose the one you
prefer. LeanPub can also notify you when we push updates. Our main GitHub repo is authoritative;
repositories on other sites are usually just mirrors used for the publishing process. GitBook will
usually contain our latest version, including not-yet-finished bits; LeanPub always contains the most
recent “public release” of any book.

¹https://devopscollective.org/donate/
²https://github.com/devops-collective-inc
³https://www.gitbook.com/@devopscollective
⁴https://leanpub.com/u/devopscollective

https://devopscollective.org/donate/
https://github.com/devops-collective-inc
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective
https://devopscollective.org/donate/
https://github.com/devops-collective-inc
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective

Windows PowerShell Basics -
Introduction
Windows PowerShell is not new technology. Windows PowerShell 4.0 ships in Windows 8.1 and
in Windows Server 2012 R2, it has therefore been around for a while. Windows PowerShell is an
essential admin tool designed specifically for Windows administration. By learning to use Windows
PowerShell, network administrators quickly gain access to information from Windows Manage-
ment Instrumentation, Active Directory and other essential sources of information. Additionally,
Microsoft added Windows PowerShell support to the Common Criteria requirements for shipping
enterprise applications. Therefore, to manage Microsoft Exchange, Azure, SQL Server, and others
one needs to know and to understand how to use Windows PowerShell. In the networking world,
this knowledge is also a requirement for managing DNS, DHCP, Network Adapters, and other
components.

So what are the basics of Windows PowerShell that I
need to know?

Windows PowerShell comes in two flavors - the first is an interactive console (sort of like a KORN
or a BASH console in the UNIX world) built into the Windows command prompt. The Windows
PowerShell console makes it simple to type short commands and to receive sorted, filtered, formatted
results. These results easily display to the console, but can redirect to XML, CSV, or text files. The
Windows PowerShell console offers several advantages such as speed, low memory overhead, and
a comprehensive transcription service that records all commands and command output.

There is also the Windows PowerShell ISE. The Windows PowerShell ISE is an Integrated Scripting
Environment, but this does not mean you must use it to write scripts. In fact, many Windows
PowerShell users like to write their code in the Windows PowerShell ISE to take advantage of the
color syntax-highlighting, drop down lists, and automatic parameter revelation features. In addition,
theWindows PowerShell ISE has a feature, called the _Show Command Add-On _that permits using
a mouse to create Windows PowerShell commands from a graphical environment. Once created, the
command either runs directly, or adds to the script pane (the choice is up to you).

Working with Windows PowerShell

OnWindows 8 or onWindows Server 2012Windows PowerShell 3.0 already exists. OnWindows 8.1
Windows PowerShell 4.0 is installed, as it is on Windows Server 2012 R2. Windows 8 (and 8.1) you

Windows PowerShell Basics - Introduction 3

only need to type the first few letters of the word PowerShell on the Start screen before Windows
PowerShell appears as an option. The figure appearing here illustrates this point. I only typed _pow
_before the Start screen search box changes to offer Windows PowerShell and an option.

image001.png

Because navigating to the Start screen and typing _pow _each time I want to launch Windows
PowerShell is a bit cumbersome, I prefer to Pin the Windows PowerShell console (and the Windows
PowerShell ISE) to both the Start page and to the Windows desktop taskbar. This technique of
pinning shortcuts to the applications provides single click access to Windows PowerShell from
wherever I may be working.

Windows PowerShell Basics - Introduction 4

image003.png

On Windows Server 2012 (and on Windows Server 2012 R2), it is not necessary to go through the
Start screen / Search routine because an icon for the Windows PowerShell console exists by default
on the taskbar of the desktop.

NOTE : TheWindows PowerShell ISE (the script editor) does not exist by default onWindows Server
2012 and Windows Server 2012 R2. You add the Windows PowerShell ISE as a feature.

Windows PowerShell Basics - Security
issues with Windows PowerShell
There are two ways of launchingWindows PowerShell - as an administrator and as a normal user. It
is a best practice when starting Windows PowerShell to start it with minimum rights. On Windows
8 (and on Windows 7) this means simply clicking on the Windows PowerShell icon. It opens as a
non-elevated user (even if you are logged on with Administrative rights). On Windows Server 2012,
Windows PowerShell automatically launches with the rights of the current user and therefore if you
are logged on as a Domain Administrator, the Windows PowerShell console launches with Domain
Administrator rights.

Running as a normal (non-elevated) user

Because Windows PowerShell adheres to Windows security constraints, a user of Windows
PowerShell cannot do anything that the user account does not have permission to do. Therefore,
if you are a non-elevated normal user, you will not have rights to do things like install printer
drivers, read from the Security log, or change system time.

Even if you are an administrator on the local Windows 8 (or Windows 7) desktop machine and
you do not launch Windows PowerShell with admin rights, you will get errors when attempting
to do things like see the configuration of your disk drives. This command and associated error
appears here. PS C:\> get-disk get-disk : Access to a CIM resource was not

available to the client. At line:1 char:1 + get-disk + ∼∼∼∼∼∼∼∼ + CategoryInfo :

PermissionDenied: (MSFT_Disk:ROOT/Microsoft/Windows/S torage/MSFT_Disk) [Get-Disk],

CimException + FullyQualifiedErrorId : MI RESULT 2,Get-Disk TIP : There is an inconsistency
with errors arising when attempting to run cmdlets that require elevated rights. For example, when
inside a non-elevated Windows PowerShell console, the error from Get-Disk is _Access to a CIM
resource was not available to the client. _The error from Stop-Service is _Cannot open xxx service
on computer. _While the Get-VM cmdlets simply returns no information (an no error). Therefore,
as a first step in troubleshooting, check for console rights.

Launching PowerShell with Admin rights

When you need to perform tasks that require Admin rights, you need to start the Windows
PowerShell console with admin rights. To do this, right click on the Windows PowerShell icon
(from either the one pinned to the task bar, the start page, or even from the one found from the

Windows PowerShell Basics - Security issues with Windows PowerShell 6

Start / Search page) and select the _Run As Administrator _option from the action menu. The great
thing about this technique is that it permits launching either the Windows PowerShell console (the
first item on the menu) as an Administrator, or from the same screen you can launch the Windows
PowerShell ISE as an Administrator. This appears in the figure that follows.

image005.png

Once you launch the Windows PowerShell console with admin rights, the User Account Control
dialog box appears seeking permission to allow Windows PowerShell to make changes to the
computer. In reality, Windows PowerShell is not making changes to the computer - not yet. But
usingWindows PowerShell you can certainly make changes to the computer - if you have the rights,
and this is what the dialog is prompting you for.

NOTE : It is possible to avoid this prompt by turning off User Account Control (UAC). However,
UAC is a significant security feature, and therefore I do not recommend disabling UAC. We have
fine-tuned it in Windows 7 and continuing through Windows 8.1 and greatly reduced the number
of UAC prompts (from the number that used to exist in the introduction of UAC on Windows Vista.
This is not “your grandma’s UAC”.)

Now that you are running Windows PowerShell with admin rights, you can do anything your
account has permission to do. Therefore, if you were to, for example, run the Get-Disk cmdlets,
you would see information similar to the following appear. “‘ PS C:> get-disk

Number Friendly Name OperationalS Total Size Partition
tatus Style
—— ————- ———— ———- ———–
0 INTEL SSDSA2BW160G3L Online 149.05 GB MBR “‘

Windows PowerShell Basics - Using
PowerShell cmdlets
PowerShell cmdlets all work in a similar fashion. This simplifies their use. All Windows PowerShell
cmdlets have a two-part name. The first part is a verb (not always strictly a grammatical verb
however). The verb indicates the action for the command to take. Examples of verbs include Get, Set,
Add, Remove, or Format. The noun is the thing to which the action will apply. Examples of nouns
include Process, Service, Disk, or NetAdapter. A dash combines the verb with the noun to complete
the Windows PowerShell command. Windows PowerShell commands, named cmdlets (pronounced
command let), because they behave like small commands or programs are used standalone, or pieced
together via a mechanism called the pipeline (refer to chapter two for the use of the pipeline).

The most common verb - Get

Out of nearly 2,000 cmdlets (and functions) on Windows 8, over 25 percent of them use the verb
Get. The verb Get retrieves information. The Noun portion of the cmdlet specifies the information
retrieved. To obtain information about the processes on your system, open the Windows PowerShell
console by either clicking on the Windows PowerShell icon on the task bar (or typing PowerShell on
the start screen of Windows 8 to bring up the search results for Windows PowerShell (as illustrated
earlier)). Once the Windows PowerShell console appears, run the Get-Process cmdlet. To do this,
use the Windows PowerShell Tab Completion feature to complete the cmdlet name. One the cmdlet
name appears, press the <ENTER> key to cause the command to execute.

NOTE : The Windows PowerShell Tab Completion feature is a great time saver. It not only
saves time (by reducing the need for typing) but it also helps to ensure accuracy, because Tab
Completion accurately resolves cmdlet names - it is sort of like a spell checker for cmdlet names. For
example, attempting to type a cmdlet name such as Get-NetAdapterEncapsulatedPacketTaskOffload
accurately (for me anyway) could be an exercise in frustration. But using tab completion, I only
have to type Get-Net and I hit the <TAB> key about six times and the correctly spelled cmdlet name
appears in the Windows PowerShell console. Learning how to quickly, and efficiently use the tab
completion is one of the keys to success in using Windows PowerShell.

Finding process information

To use the Windows PowerShell Tab Completion feature to enter the Get-Process cmdlet name onto
the Windows PowerShell console command line, type the following on the first line of the Windows
PowerShell console: Get-Pro + <tab> + <ENTER> The Get-Process command and the associated
output from the cmdlet appear in the figure that follows.

Windows PowerShell Basics - Using PowerShell cmdlets 8

image007.png

To find information about Windows services, use the verb Get and the noun service. To type the
cmdlet name, type the following: Get-Servi + <TAB> + <ENTER> NOTE : It is aWindows PowerShell
convention to use singular nouns. While not universally applied (my computer has around 50 plural
nouns) it is a good place to start. So if you are not sure if a noun (or parameter) is singular or plural,
choose the singular - most of the time you will be correct.

Identifying installed Windows Hotfixes

To find a listing of Windows Hotfixes applied to the current Windows installation, use the Get-
Hotfix cmdlet (the verb is Get and the noun is Hotfix). Inside the Windows PowerShell console,
type the following: Get-Hotf + <TAB> + <ENTER> The command, and the output associated with
the command appear here.

Windows PowerShell Basics - Using PowerShell cmdlets 9

image009.png

Get detailed service information

To find information about services on the system, use the Get-Service cmdlet. Once again, it is not
necessary to type the entire command. The following command uses Tab Expansion to complete
the Get-Service command and to execute it. Get-Servi + <TAB> + <ENTER> NOTE : The
efficiency of Tab Expansion depends upon the number of cmdlets, functions, or modules installed
on the computer. As more commands become available, the efficiency of Tab Expansion reduces
correspondingly.

The following (truncated) output appears following the Get-Service cmdlet. “‘ PS C:> Get-Service

Status Name DisplayName
—— —- ———–
Running AdobeActiveFile… Adobe Active File Monitor V6
Stopped AeLookupSvc Application Experience
Stopped ALG Application Layer Gateway Service
Stopped AllUserInstallA… Windows All-User Install Agent
<TRUNCATED OUTPUT> “‘ ### Identifying installed network adapters

To find information about network adapters on yourWindows 8 (orWindows Server 2012) machine,
use the Get-NetAdapter cmdlet. Using Tab Expansion, type the following: Get-NetA + <TAB> +

<ENTER> The command and associated output appear here. “‘ PS C:> Get-NetAdapter

Name InterfaceDescription ifIndex Status
—- ——————– ——- ——

Windows PowerShell Basics - Using PowerShell cmdlets 10

Network Bridge Microsoft Network Adapter Multiplexo… 29 Up
Ethernet Intel(R) 82579LM Gigabit Network Con… 13 Not Pre…
vEthernet (WirelessSwi… Hyper-V Virtual Ethernet Adapter #4 31 Up
vEthernet (External Sw… Hyper-V Virtual Ethernet Adapter #3 23 Not Pre…
vEthernet (InternalSwi… Hyper-V Virtual Ethernet Adapter #2 19 Up
Bluetooth Network Conn… Bluetooth Device (Personal Area Netw… 15 Disconn…
Wi-Fi Intel(R) Centrino(R) Ultimate-N 6300… 12 Up “‘ ### Retrieving detected network connection
profiles

If youwant to see the network connection profile thatWindows 8 (orWindows Server 2012) detected
for each interface, use the Get-NetConnectionProfile cmdlet. To run this command, use the following
command with Tab Expansion. Get-NetC + <TAB> + <ENTER> The command and associated output
appear here. “‘ PS C:> Get-NetConnectionProfile

Name : Unidentified network
InterfaceAlias : vEthernet (InternalSwitch)
InterfaceIndex : 19
NetworkCategory : Public
IPv4Connectivity : NoTraffic
IPv6Connectivity : NoTraffic

Name : Network 10
InterfaceAlias : vEthernet (WirelessSwitch)
InterfaceIndex : 31
NetworkCategory : Public
IPv4Connectivity : Internet
IPv6Connectivity : NoTraffic “‘ NOTE : Windows PowerShell is not case sensitive. There are a
few instances where case sensitivity is an issue (for example when using Regular Expressions) but
cmdlet names, parameters and values are not case sensitive. Windows PowerShell convention uses
a combination of upper case and lower case letters (generally at syllable breaks in long noun names
such as NetConnectionProfile) but this is not a requirement for Windows PowerShell to interpret
accurately the command. This combination of upper case and lowercase letters are for readability. If
you use Tab Expansion, Windows PowerShell automatically converts the commands to this fashion.

Getting the current culture settings

There are two types of culture settings on a typicalWindows computer. There are the culture settings
for the current culture settings. This includes information about the keyboard layout, and the display
format of items such as numbers, currency, and dates. To find the value of these cultural settings,
use the Get-Culture cmdlet. To call the Get-Culture cmdlet using Tab Expansion to complete the
command, type the following on the current line of the Windows PowerShell console: Get-Cu +

<TAB> + <ENTER> When the command runs basic information such as the Language Code ID number
(LCID), the name of the culture settings, as well as the display name of the culture settings return
to the Windows PowerShell console. The command and associated output appears here. “‘ PS C:>
Get-Culture

Windows PowerShell Basics - Using PowerShell cmdlets 11

LCID Name DisplayName
—- —- ———–
1033 en-US English (United States) The second culture related grouping of information is

the current user interface (UI) settings for Windows. The UI culture settings determine

which text strings appear in user interface elements such as menus and error messages. To

determine the current UI culture settings that are active use the Get-UICulture cmdlet.

Using Tab Expansion to call the Get-UICulture cmdlet, type the following: Get-Ui + <TAB>
+ <ENTER>
The command and output associated from the command appears here. PS C:> Get-UICulture

LCID Name DisplayName
—- —- ———–
1033 en-US English (United States) “‘

NOTE : On my laptop, both the current culture and the current UI culture are the same. This is not
always the case, and at times, I have seen machines become rather confused when the user interface
is set for a localized language, and yet the computer itself was still set for US English (this is especially
problematic when using virtual machines created in other countries. In these cases, even a simple
task like typing in a password becomes very frustrating. To fix these types of situations you can use
the Set-Culture cmdlet.

Finding the current date and time

To find the current date or time on the local computer, use the Get-Date cmdlet. When typing the
Get-Date cmdlet name in the Windows PowerShell console tab expansion does not help too much.
This is because there are 15 cmdlets (on my laptop) that have a cmdlet name that begins with the
letters Get-Da (this includes all of the Direct Access cmdlets as well as the Remote Access cmdlets).
Therefore using Tab Expansion (on my laptop anyway) to get the date requires me to type the
following: Get-Dat + <TAB> + <Enter> The above command syntax is just the same number of
letters to type as doing the following: Get-Date + <ENTER> The following illustrates the command
and the output associated with the command. PS C:\> Get-Date

Tuesday, November 20, 2012 9:54:21 AM

Generating a random number

Windows 2.0 introduced the Get-Random cmdlet, and when I saw it I was not too impressed. The
reason was that I already knew how to generate a random number. Using the .NET Framework
System.Random class, all I needed to do was create a new instance of the System.Random object,
and call the _next _method. This appears here. PS C:\> (New-Object system.random).next()

225513766 Needless to say, I did not create all that many random numbers. I mean, who wants to
do all that typing. But once I had the Get-Random cmdlet, I actually began using random numbers
for all sorts of things. Some of the things I have used the Get-Random cmdlet to do appear in the
following list.

Windows PowerShell Basics - Using PowerShell cmdlets 12

• Pick prize winners for the Scripting Games
• Pick prize winners for Windows PowerShell user group meetings
• To connect to remote servers in a random fashion for load balancing purposes
• To create random folder names
• To create temporary users in active directory with random names
• To wait a random amount of time prior to starting or stopping processes and services (great
for performance testing)

The Get-Random cmdlet has turned out to be one of the more useful cmdlets. To generate a random
number in theWindows PowerShell console using Tab Expansion type the following on the first line
in the console: Get-R +<TAB>+<ENTER> The command, and output associated with the command
appears here. PS C:\> Get-Random 248797593

Windows PowerShell Basics -
Supplying options for cmdlets
The easiest Windows PowerShell cmdlets to use require no options. But unfortunately, that is
only a fraction of the total number of cmdlets (and functions) available in Windows PowerShell
4.0 as it exists on either Windows 8.1 or Windows Server 2012 R2. Fortunately, the same Tab
Expansion technique used to create the cmdlet names on the Windows PowerShell console, works
with parameters as well.

Using single parameters

WhenworkingwithWindows PowerShell cmdlets, often the cmdlet only requires a single parameter
to filter out the results. If a parameter is the default parameter, you do not have to specify the
parameter name - you can use the parameter positionally. This means that the first value appearing
after the cmdlet name, is assumed to be a value for the default (or position 1) parameter. On the
other hand, if a parameter is a named parameter the parameter name (or parameter alias or partial
parameter name) is always required when using the parameter.

Finding specific types of hotfixes

For example to find all of the _update _hotfixes, use the Get-HotFix cmdlet with the -Description
parameter and supply a value of _update _to the -Description parameter. This is actually easier
than it sounds. Once you type Get-Hot and press the <TAB> key you have the Get-Hotfix portion
of the command. Then a space and -D <TAB> completes the Get-HotFix -Description portion of
the command. Now you need to type Update and press <ENTER>. With a little practice, using Tab
Expansion becomes second nature. You only need to type the following: Get-Hot + <TAB> + -D +

<TAB> + Update + <ENTER> The completed command and the output associated with the command
appear in the figure that follows.

Windows PowerShell Basics - Supplying options for cmdlets 14

image011.png

If you attempt to find only update types of hotfixes by supplying the value _update _in the first
position, an error raises. The offending command, and associated error, appears here. PS C:\> Get-

HotFix update Get-HotFix : Cannot find the requested hotfix on the 'localhost' computer.

Verify the input and run the command again. At line:1 char:1 + Get-HotFix update +

∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼ + CategoryInfo : ObjectNotFound: (:) [Get-HotFix], ArgumentEx-

ception + FullyQualifiedErrorId : GetHotFixNoEntriesFound,Microsoft.PowerShell.Commands

.GetHotFixCommand The error, while not really clear, seems to indicate that the Get-HotFix cmdlet
attempts to find a hotfix named _update. _This is, in fact, the attempted behavior. The help file
information for the Get-HotFix cmdlet reveals that -ID is position 1. This appears here. “‘ -Id
<String[]>
Gets only hotfixes with the specified hotfix IDs. The default is all
hotfixes on the computer.

1 Required? false

2 Position? 1

3 Default value All hotfixes

4 Accept pipeline input? false

5 Accept wildcard characters? False

1 Well, what about using the -Description parameter, you may ask? The help file tells \

2 that the -Description parameter is a named parameter. This means you can only use th\

3 e -Description parameter if you specify the parameter name as was accomplished earli\

4 er in this section. Here is the applicable portion of the help file for the -Descrip\

5 tion parameter.

-Description <String[]>

Windows PowerShell Basics - Supplying options for cmdlets 15

Gets only hotfixes with the specified descriptions. Wildcards are
permitted. The default is all hotfixes on the computer.

1 Required? false

2 Position? named

3 Default value All hotfixes

4 Accept pipeline input? false

5 Accept wildcard characters? True

1 ### Finding specific processes

2

3 To find process information about a single process, I use the -Name parameter. Becau\

4 se the -Name parameter is the default (position 1) parameter for the Get-Process cmd\

5 let, you do not have to specify the -Name parameter when calling Get-Process if you \

6 do not wish to do so. For example, to find information about the PowerShell process \

7 by using the Get-Process cmdlet type the following command in the first line of the \

8 Windows PowerShell console by using Tab Expansion:

Get-Pro + <TAB> + <SPACE> + Po + <TAB> + <ENTER> The completed command and associated

output appears here. PS C:> Get-Process powershell

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
——- —— —– —– —– —— – ———–
607 39 144552 164652 718 5.58 4860 powershell You can tell that the Get-Process cmdlet

accepts the -Name parameter in a positional manner because the Help file states it is

in position 1. This appears here. -Name <String[]>
Specifies one or more processes by process name. You can type multiple
process names (separated by commas) and use wildcard characters. The
parameter name (“Name”) is optional.

1 Required? false

2 Position? 1

3 Default value

4 Accept pipeline input? true (ByPropertyName)

5 Accept wildcard characters? True

Windows PowerShell Basics - Supplying options for cmdlets 16

1 **NOTE** : Be careful using positional parameters. This is because they can be confu\

2 sing. For example, the first parameter for the Get-Process cmdlet is the -Name param\

3 eter, but the first position parameter for the Stop-Parameter is the -ID parameter. \

4 As a best practice always refer to the Help files to see what the parameters actuall\

5 y are called, and the position in which they are expected. This is even more importa\

6 nt when using cmdlet with multiple parameters - such as the Get-Random cmdlet discus\

7 sed next.

8

9 ### Generating random numbers in a range

10

11 When used without any parameters, the Get-Random cmdlet returns a number that is in \

12 the range of 0 to 2,147,483,647. We have never had a Windows PowerShell user group m\

13 eeting in which there were either 0 people in attendance, nor have we had a Windows \

14 PowerShell user group meeting with 2,147,483,647 people in attendance. Therefore whe\

15 n handing out prizes at the end of the day, it is important to set a different minim\

16 um and maximum number.

17

18 **NOTE** : When using the -Maximum parameter for the Get-Random cmdlet keep in mind \

19 that the maximum number never appears. Therefore, if you have 15 people attending yo\

20 ur Windows PowerShell user group meeting, you would want to set the -Maximum paramet\

21 er to 16 (unless you do not like the 15 person and do not want them to win any prize\

22 s).

23

24 The default parameter for the Get-Random cmdlet is the -Maximum parameter. This mean\

25 s that you can use the Get-Random cmdlet to generate a random number in the range of\

26 0 to 20 by using Tab Expansion on the first line of the Windows PowerShell console.\

27 Type the following (remember Get-Random never reaches the maximum number, therefore\

28 always use a number 1 greater than the desired upper number):

Get-R + <TAB> + <SPACE> + 21 If you want to generate a random number between 1 and 20,

you might think you could use Get-Random 1 21, but that generates an error. The command

and the error appear here. PS C:> Get-Random 1 21
Get-Random : A positional parameter cannot be found that accepts argument ‘21’.
At line:1 char:1
+ Get-Random 1 21
+ ∼∼∼
+ CategoryInfo : InvalidArgument: (:) [Get-Random], ParameterBindingEx
ception
+ FullyQualifiedErrorId : PositionalParameterNotFound,Microsoft.PowerShell.Comm
ands.GetRandomCommand “‘ The error states that a positional parameter cannot be found that
accepts argument ‘21’. This is because the Get-Random only has one positional parameter - the -
Maximum parameter. The -Minimum parameter is a named parameter (this appears in the Help file
for the Get-Random cmdlet. Use of the Help files appears in Chapter two).

Windows PowerShell Basics - Supplying options for cmdlets 17

To generate a random number in the range of 1 to 20, use named parameters. To assist in creating
the command use Tab Expansion for the cmdlet name as well as for the parameter names. Type the
following to create the command using Tab Expansion. Get-R + <TAB> + -M + <TAB> + <SPACE>

+ 21 + -M + <TAB> + <SPACE> + 1 + <ENTER> The command and the output associated with the
command appears here. PS C:\> Get-Random -Maximum 21 -Minimum 1 19 ### An introduction
to parameter sets

One of the things that quickly becomes confusing with Windows PowerShell cmdlets is that there
are often different ways of using the same cmdlet. For example, you can specify the -Minimum
and the -Maximum parameters, but you cannot also specify the -Count parameter. This is a bit
unfortunate, because it would seem that using the -Minimum and the -Maximum parameters to
specify the minimum and the maximum numbers for the random numbers makes sense. When the
Windows PowerShell user group has five prizes to give away it is inefficient to have to either write
a script to generate the five random numbers. It is also inefficient to have to run the same command
five times.

This is where command sets come into play. The -Minimum and the -Maximum parameters specify
the range within which to pick a single random number. To generate more than one random number
use the -Count parameter. Here are the two parameter sets. “‘ Get-Random [[-Maximum] <Object>]
[-Minimum <Object>] [-SetSeed <Int32>]
[<CommonParameters>]

Get-Random [-InputObject] <Object[]> [-Count <Int32>] [-SetSeed <Int32>]
[<CommonParameters>] “‘ The first parameter set accepts -Maximum, -Minimum and -SetSeed. The
second parameter set accepts -InputObject, -Count and -SetSeed. Therefore you cannot use -Count
with -Minimum or -Maximum - they are in two different groups of parameters (called parameter
sets).

NOTE : It is quite common for Windows PowerShell cmdlets to have multiple parameter sets. Tab
Expansion only offers parameters from one parameter set - therefore when you choose a parameter
(such as -Count from Get-Random) the non-compatable parameters do not appear in tab Expansion.
This feature keeps you from creating invalid commands. For an overview of a cmdlets parameter
sets, use the Get-Help cmdlet.

Generating a certain number of random numbers

The Get-Random cmdlet, when used with the -Count parameter accepts an -InputObject parameter.
The -InputObject parameter is quite powerful. The help file, appearing here, states that it accepts a
collection of objects. “‘ -InputObject <Object[]>
Specifies a collection of objects. Get-Random gets randomly selected
objects in random order from the collection. Enter the objects, a variabl
that contains the objects, or a command or expression that gets the
objects. You can also pipe a collection of objects to Get-Random.

Required? true
Position? 1

Windows PowerShell Basics - Supplying options for cmdlets 18

Default value
Accept pipeline input? true (ByValue)
Accept wildcard characters? False An array (or a range) of numbers just happens to also be

a collection of objects. The easiest way to generate a range (or an array) of numbers

is to use the range operator. The **range operator** is two dots (periods) between two

numbers. The **range operator** does not require spaces between the numbers, and dots.

This appears here. PS C:> 1..5
1
2
3
4
5 Now to pick five random numbers from the range of 1 to 10, only requires the command

appearing here. (The parentheses are required around the range of 1 to 10 numbers

to ensure the range of numbers creates prior to attempting to select five from the

collection. Get-Random -InputObject (1..10) -Count 5 The command and output associated

with the command appear here. PS C:> Get-Random -InputObject (1..10) -Count 5
7
5
10
1
8 “‘

Windows PowerShell Basics - Using
command line utilities
As easy as Windows PowerShell is to use, there are times when it is easier to find information by
using a command line utility. For example, to find IP configuration information you only need to
use the _Ipconfig.exe _utility. You can type this directly into the Windows PowerShell console and
read the output in the Windows PowerShell console. This command and associated output appears
here in truncated form. “‘ PS C:> ipconfig

Windows IP Configuration

Wireless LAN adapter Local Area Connection* 14:

Media State : Media disconnected Connection-specific DNS Suffix . :

Ethernet adapter vEthernet (WirelessSwitch):

Connection-specific DNS Suffix . : quadriga.comLink-local IPv6Address : fe80::915e:d324:aa0f:a54b%31
IPv4 Address. : 192.168.13.220 Subnet Mask : 255.255.248.0 Default Gateway
. : 192.168.15.254

Wireless LAN adapter Local Area Connection* 12:

Media State : Media disconnected Connection-specific DNS Suffix . :

Ethernet adapter vEthernet (InternalSwitch):

Connection-specific DNS Suffix . : Link-local IPv6 Address : fe80::bd2d:5283:5572:5e77%19 IPv4
Address. : 192.168.3.228 Subnet Mask : 255.255.255.0 Default Gateway
. . . . : 192.168.3.100

<OUTPUT TRUNCATED> “‘ To obtain the same information using Windows PowerShell would
require a more complex command. The command to obtain IP information is Get-NetIPAddress,
But there are several advantages. For one thing, the output from the _IpConfig.exe _command is
text, whereas the output from Windows PowerShell is an object. This means you can group, sort,
filter, and format the output in an easy fashion.

The cool thing is that with Windows PowerShell console, you have not only the simplicity of the
command prompt, but you also have the powerfulWindows PowerShell language built in. Therefore,
if you need to refresh Group Policy three times and wait for five minutes between refreshes, you
can use the command appearing here (looping is covered in chapter eleven). 1..3 | % {gpupdate

; sleep 300}

Windows PowerShell Basics - Working
with help options
The first thing you need to do is to update the help files on your system. This is because Windows
PowerShell 3.0 introduces a new model in which the help files update on a regular basis.

To update help on your system, you must ensure two things. The first is that you open the Windows
PowerShell console with ADMIN rights. This is because the Windows PowerShell help files reside
in the protected WindowsSystem32WindowsPowerShell directory. Once you have launched the
Windows PowerShell console with admin rights you need to ensure your computer has Internet
access so it can download and install the updated files. If your computer does not have Internet
connectivity, it will take several minutes before the command times out (Windows PowerShell tries
really hard to obtain the updated files). If you run the Update-Help cmdlet with no parameters
Windows PowerShell attempts to download updated help for all modules stored in the default
Windows PowerShell modules locations that support updatable help. To run Update-Help more
than once a day use the -Force parameter as appears here. Update-Help -Force Even without
downloading updated Windows PowerShell help, the help subsystem displays the syntax of the
cmdlet and other rudimentary information about the cmdlet. In this way.

To display help information from the internet, use the -Online switch. When used in this way,
Windows PowerShell causes the default browser to open to the appropriate page from the Microsoft
TechNet web site.

In the enterprise, network administrators may want to use the Save-Help cmdlet to download help
from the Internet. Once downloaded, the Update-Help cmdlet can point to the network share for the
files. This is an easy task to automate, and can run as a scheduled task.

Windows PowerShell Basics - Working
with modules
What makes the big difference in capabilities between Windows PowerShell 4.0 installed on
Windows 7 or Windows 8.1 is not the difference in the capability of Windows PowerShell 4.0.
The package provides the same abilities. The difference is the modules introduced with Windows
8 and expanded in Windows 8.1. To find out the commands that a module provides, I use the Get-
Command cmdlet and specify the name of a particular module. In this example, I look at the com-
mands provided by the NetAdapter. Get-Command-ModuleNetAdapter If I use the Get-Command
cmdlet and an error arises, it may be because the module has not yet loaded. To load the module use
the Import-Module cmdlet. This command appears here. Import-ModuleNetAdapter If I am curious
as to the number of commands exposed by the module, I can pipeline the results to the Measure-
Object cmdlet. This command appears here. Get-Command-Modulenetadapter|Measure-Object

Working with Network adapters
Windows offers many different ways to work with Network Adapters. The correct choice depends
upon several things. First probably, I need to know what version of the operating system I am
running. In most cases the version of the operating system will either limit or expand my options
for working with Network Adapters. Next I need to know if I am working locally or remotely,
because where I run my commands from often determine my choice of tool. Lastly I always choose
the tool that is easiest for me to do the job I have to perform. This is not always the easiest tool for
anyone to use, but I choose the tool that I know. For me, for example, typing even a dozen commands
into the Windows PowerShell ISE is much easier than attempting to use NetSh in some context with
which I am unfamiliar. In addition, by typing my commands into the Windows PowerShell ISE,
I can easily save my commands off as a Windows PowerShell script, that I can reuse. Of course I
can reuse NetSh commands - I do all the time, but it is an extra step. So, to summarize, what is my
decision matrix (assuming identical capabilities)?

1. Version of Operating System
2. Remoting capability
3. Ease of use

All things being equal, what tools are available to me to use to accomplish my work with network
adapters?

1. Windows PowerShell
2. NetSH
3. Windows Management Instrumentation (WMI)
4. VBScript
5. Console Utilities

In this booklet, I will talk about each of these approaches as I look at the different tasks. So what
tasks am I talking about? Well, I am specifically talking about the network adapter. So here are the
things I am going to cover:

1. Identifying network adapters
2. Enabling and disabling network adapters
3. Renaming network adapters
4. Finding connected network adapters
5. Identifying network adapter power setting
6. Configuring network adapter power settings

Working with Network adapters 23

7. Gathering network adapter statistics

Along the way, I will be showing some pretty cool Windows PowerShell tricks.

PowerTip : Find protocol binding on net adapters using PowerShell

Question: How can you use Windows PowerShell to show which enabled protocols are bound to
your network adapters using Windows 8.1 and PowerShell 4.0?

Answer: Use the Get-Netadapter cmdlet to retrieve all of the network adapters on your system.
Then pipeline it to the Get-NetAdapterBinding cmdlet and filter on enabled is equal to true. This
command appears here: Get-NetAdapter|Get-NetAdapterBinding|-enabled-eq$true

Identifying network adapters
One of the great things about Windows Management Instrumentation (WMI) is the way that it can
provide detailed information. The bad thing is that it requires a specialist level of knowledge and
understanding to effectively use and to understand the information (either that or a good search
engine, such as BING⁵ and an awesome repository of information such as the Script Center⁶).

Using raw WMI to identify network adapters

One of the cool things about Windows PowerShell, since version 1.0, is that it provides easier access
to WMI information. The bad thing, of course, is that it is still wrestling with WMI, which some
IT Pro’s seem to hate (or at least dislike). The great thing about using raw WMI is compatibility
with older versions of the operating system. For example, using rawWMI andWindows PowerShell
would make it possible to talk to Windows XP, Windows 2003 Server, Windows 2008 Server, Vista,
Windows Server 2008 R2 and Windows 7, in addition to the modern operating systems of Windows
8, 8.1 and Windows Server 2012 and Windows Server 2012 R2.

So how do I do it? I used to be able to find our real network card by finding the one that
was bound to TCP/IP. I would query the Win32_NetworkAdapterConfiguration WMI class, and
filter on the IPEnabled property. Using this approach, I would have done something like this:
Get-WmiObject-ClassWin32_NetworkAdapterConfiguration -filter"IPEnabled = $true" The
problem with this methodology nowadays is that some of the pseudo adapters are also IPEnabled.
The above command would eliminate many, but not necessarily all of the adapters.

A better approach is to look at theWin32_NetworkAdapter class and query the NetConnectionStatus
property. Using this technique, I return only network adapter devices that are actually connected
to a network. While it is possible that a pseudo adapter could sneak under the wire, the likelihood
is more remote. In this command, I will use the Get-WmiObject PowerShell cmdlet to return all
instances of Win32_NetworkAdapter class on the computer. I then create a table to display the data
returned by the NetConnectionStatus property. Get-WmiObject-ClassWin32_NetworkAdapter|

Format-Table-PropertyName,NetConnectionStatus-AutoSize The fruit of our labor is somewhat
impressive. I have a nice table that details all of the fake and real network adapters on our laptop, as
well as the connection status of each. Here is the list from my laptop. “‘ Name NetConnectionStatus

⁵http://www.bing.com/
⁶http://technet.microsoft.com/en-us/scriptcenter

http://www.bing.com/
http://technet.microsoft.com/en-us/scriptcenter
http://www.bing.com/
http://technet.microsoft.com/en-us/scriptcenter

Identifying network adapters 25

WAN Miniport (L2TP) WAN Miniport (PPTP) WAN Miniport (PPPOE) WAN Miniport (IPv6)
Intel(R) PRO/1000 PL Network Connection 2 Intel(R) PRO/Wireless 3945ABG Network Connection
0 WANMiniport (IP) Microsoft 6to4 Adapter Bluetooth Personal Area Network RAS Async Adapter
isatap.{51AAF9FF-857A-4460-9F17-92F7626DC420} Virtual Machine Network Services Driver Mi-
crosoft ISATAP Adapter Bluetooth Device (Personal Area Network) 7 6TO4 Adapter Microsoft 6to4
Adapter Microsoft Windows Mobile Remote Adapter isatap.launchmodem.com isatap.{647A0048-
DF48-4E4D-B07B-2AE0995B269F} Microsoft Windows Mobile Remote Adapter WAN Miniport
(SSTP) WAN Miniport (Network Monitor) 6TO4 Adapter 6TO4 Adapter Microsoft 6to4 Adapter
Microsoft Windows Mobile Remote Adapter isatap.{C210F3A1-6EAC-4308-9311-69EADBA00A04}
isatap.launchmodem.com Virtual Machine Network Services Driver Virtual Machine Network Ser-
vices Driver Teredo Tunneling Pseudo-Interface isatap.{647A0048-DF48-4E4D-B07B-2AE0995B269F}
“‘ There are two things you will no doubt notice. The first is that most of the network adapters report
no status what-so-ever. The second thing you will notice is that the ones that do report a status do
so in some kind of code. The previous table is therefore pretty much useless! But it does look nice.

A little work in the Windows SDK looking up the Win32_NetworkAdapter WMI class and I run
across the following information: “‘ Value Meaning

0 Disconnected

1 Connecting

2 Connected

3 Disconnecting

4 Hardware not present

5 Hardware disabled

6 Hardware malfunction

7 Media disconnected

8 Authenticating

9 Authentication succeeded

10 Authentication failed

11 Invalid address

12 Credentials required The value of 2 means the network adapter is connected. Here is

the code I wrote to exploit the results of our research. Get-WmiObject -classwin32_-
networkadapter -filter “NetConnectionStatus = 2”| Format-List -Property [a-z]* “‘ Such ecstasy is
short lived; however, when I realize that while I have indeed returned information about a network
adapter that is connected, I do not have any of the configuration information from the card.

What I need is to be able to use the NetConnectionStatus property fromWin32_Networkadapter and
to be able to obtain the Tcp/Ip configuration information from theWin32_NetworkAdapterConfigu-
rationWMI class. This sounds like a job for an association class. In VBScript querying an Association

Identifying network adapters 26

class involved performing confusing AssociatorsOf queries (Refer to the MSPress book, “ Window
Scripting with WMI: Self Paced Learning Guide⁷” for more information about this technique.)

Using the association class with Windows PowerShell, I come up with the FilterAssociatedNet-
workAdapters.ps1 script shown here.

FilterAssociatedNetworkAdapters.ps1 “‘ Param($computer=”localhost”)

functionfunline ($strIN) { $num=$strIN.length for($i=1 ; $i-le$num ; $i++) { $funline=$funline+”=” }
Write-Host-ForegroundColoryellow$strIN Write-Host-ForegroundColordarkYellow$funline } #end
funline

Write-Host-ForegroundColorcyan”Network adapter settings on $computer”

Get-WmiObject -Class win32_NetworkAdapterSetting ‘ -computername $computer| Foreach-object
‘ { If(([wmi]$_.element).netconnectionstatus -eq 2) { funline(“Adapter: $($_.setting)”) [wmi]$_.set-
ting [wmi]$_.element } #end if } #end foreach I begin the script by using a command line

parameter to allow us to run the script remotely if needed. I use the Param statement to

do this. I also create a function named funline that is used to underline the results

of the query. It makes the output nicer if there is a large amount of data returned.

Param($computer=”localhost”)

functionfunline ($strIN) { $num=$strIN.length for($i=1 ; $i-le$num ; $i++) { $funline=$funline+”=” }
Write-Host-ForegroundColoryellow$strIN Write-Host-ForegroundColordarkYellow$funline } #end
funline I print out the name of the computer by using the Write-Host cmdlet as seen

here. I use the color cyan so the text will show up real nice on the screen (unless of

course your background is also cyan, then the output will be written in invisible ink.

That might be cool as well.) Write-Host -Foreground Colorcyan “Network adapter settings on
$computer” Then I get down to actual WMI query. To do this, I use the Get-WmiObject

cmdlet. I use the -computername parameter to allow the script to run against other

computers, and I pipeline the results to the ForEach-Object cmdlet. Get-WmiObject -
Class win32_NetworkAdapterSetting ‘ -computername $computer| Foreach-object ‘ The hard part

of the query is seen here. I need a way to look at the netConnectionStatus property of the

Win32_NetworkAdapter class. This class is referred to by the reference returned from the

association query. It is called element. To gain access to this class, I use the reference

that was returned and feed it to the [WMI] type accelerator (it likes to receive a path,

and this is what the reference is). Since the reference refers to a specific instance

of a WMI class, and since the [WMI] type accelerator can query a specific instance of

a class, I are now able to obtain the value of the netConenctionStatus property. So I

say in our script, if it is equal to 2, then I will print out the name of the network

adapter, and the configuration that is held in the setting property and the adapter

information that held in the element property. This section of the code is seen here.

{ If(([wmi]$_.element).netconnectionstatus -eq2) { funline(“Adapter: $($_.setting)”) [wmi]$_.setting
[wmi]$_.element } #end if “‘ The result of running the script is that it displays information from

⁷http://www.amazon.com/Microsoft%C2%AE-Windows%C2%AE-Scripting-WMI-Self-Paced/dp/0735622310/ref=sr_1_1?ie=UTF8&qid=
1389289441&sr=8-1&keywords=ed+wilson+wmi

http://www.amazon.com/Microsoft%C2%AE-Windows%C2%AE-Scripting-WMI-Self-Paced/dp/0735622310/ref=sr_1_1?ie=UTF8&qid=1389289441&sr=8-1&keywords=ed+wilson+wmi
http://www.amazon.com/Microsoft%C2%AE-Windows%C2%AE-Scripting-WMI-Self-Paced/dp/0735622310/ref=sr_1_1?ie=UTF8&qid=1389289441&sr=8-1&keywords=ed+wilson+wmi
http://www.amazon.com/Microsoft%C2%AE-Windows%C2%AE-Scripting-WMI-Self-Paced/dp/0735622310/ref=sr_1_1?ie=UTF8&qid=1389289441&sr=8-1&keywords=ed+wilson+wmi
http://www.amazon.com/Microsoft%C2%AE-Windows%C2%AE-Scripting-WMI-Self-Paced/dp/0735622310/ref=sr_1_1?ie=UTF8&qid=1389289441&sr=8-1&keywords=ed+wilson+wmi

Identifying network adapters 27

both the Win32_NetworkAdapter WMI class and the Win32_NetworkAdapterConfiguration class.
It also shows us I only have one connected network adapter.

Using NetSh

Microsoft created NetSh back in 2000, and it has been a staple of networking ever since then. When
I open it up, now days, it displays a message saying that it might be removed in future versions of
Windows, and therefore I should begin using Windows PowerShell. Here is the message:

image013.png

Now, because NetSh is an old style menu type application, it is possible to enter NetSh, and walk
my way down through the menus until you arrive at the proper location. Along the way, if I get
lost, I can use the ? to obtain help. The problem, is that the help is quite often not very helpful, and
therefore it takes me at times nearly a dozen times before the command is correct. The great thing
is that, for the most part, Once I figure out a command, I can actually keep track of my location in
the program, and back all the way out and enter the command as a one linner. Here is the NetSh
command to display network interface information that is bound to Ipv4: netsh interface ipv4

show interfaces The output appears here:

Identifying network adapters 28

image015.png

Using PowerShell on Windows 8 or above

If I have the advantage of Windows 8 or 8.1 or Windows Server 2012 or Windows Server 2012 R2,
then I have the built in NetAdapter module. Due to the way that modules autoload on Windows
Powell I do not need to remember that I am using functions that exist in the NetAdapter module. I
can use either Windows PowerShell 3 or Windows PowerShell 4 and the behavior will be the same
(Windows 8.1 and Windows Server 2012 R2 come with Windows PowerShell 4 and Windows 8 and
Windows Server 2012 come with Windows PowerShell 3).

The Get-NetAdapter cmdlet returns the name, interface description, index number, and status of all
network adapters present on the system. This is the default display of information and appears in
the figure that follows.

image017.png

To focus in on a particular network adapter, I use the _name _parameter and supply the name of the
network adapter. The good thing, is that in Windows 8 (and on Windows Server 2012) the network
connections receive new names. Nomore of the “local area connection” and “local area connection(2)

Identifying network adapters 29

to attempt to demystify. The wired network adapter is simply _Ethernet _and the wireless network
adapter is _Wi-Fi. _The following command retrieves only then _Ethernet _network adapter.
Get-NetAdapter -Name Ethernet To dive into the details of the _Ethernet _network adapter,
I pipeline the returned object to the Format-List cmdlet and I choose all of the properties. The
command appearing here uses the _fl _alias for the Format-List cmdlet. Get-NetAdapter -Name

ethernet|Format-List * The command and output associated with the command appear in the
figure that follows.

image019.png

There are a number of excellent properties that might bear further investigation, for example
there are the _adminstatus _and the _mediaconnectionstatus _properties. The following com-
mand returns those two properties. Get-NetAdapter -Name ethernet |select adminstatus,

MediaConnectionState Of course, there are other properties that might be interesting as well.
These properties appear here, along with the associated output (the following is a single log-

Identifying network adapters 30

ical command broken on two lines). Get-NetAdapter -Name ethernet | select ifname,

adminstatus, MediaConnectionState, LinkSpeed, PhysicalMediaType The output from the above
command appears here: ifName : Ethernet_7 AdminStatus : Down MediaConnectionState :

Unknown LinkSpeed : 0 bps PhysicalMediaType : 802.3 I decide to look only for network
adapters that are in the admin status of _up. _I use the command appearing here. “‘ PS C:> Get-
NetAdapter|whereadminstatus-eq”up”

Name InterfaceDescription ifIndex Status —- ——————– ——- —— vEthernet (InternalSwi…
Hyper-V Virtual Ethernet Adapter #3 22 Up vEthernet (ExternalSwi… Hyper-V Virtual Ethernet
Adapter #2 19 Up Bluetooth Network Conn… Bluetooth Device (Personal Area Netw… 15 Dis-
conn… Wi-Fi Intel(R) Centrino(R) Ultimate-N 6300… 12 Up To find the disabled network

adapters, I change the _adminstatus _from _up _to _down. _This command appears

here. Get-NetAdapter|whereadminstatus-eq”down” I go back to my previous command,

and modify it to return WI-FI information. This command, and associated output

appears here (this is a single logical command). PS C:> Get-NetAdapter-Name wi-fi| select
ifname,adminstatus,MediaConnectionState,LinkSpeed,PhysicalMediaType

ifName : WiFi_0 AdminStatus : Up MediaConnectionState : Connected LinkSpeed : 54 Mbps
PhysicalMediaType : Native 802.11 If I want to find any network adapters sniffing the

network, I look for _promiscousmode. _This command appears here. Get-NetAdapter|
? PromiscuousMode -eq $true When I combine the Get-NetAdapter function with the

Get-NetAdapterBinding function I can easily find out which protocols are bound to

which network adapter. I just send the results to the Where-Object and check to see

if the enabled property is equal to true or not. Here is the command. Get-NetAdapter
|Get-NetAdapterBinding | ? enabled -eq $true “‘ Here is an example of both the command and the
output from the command.

Identifying network adapters 31

image021.png

If I want to find which network adapters have the Client for Microsoft Networks bound, I need to
first see which protocols are enabled (using the syntax from the previous command) and I need to
see which one of the enabled protocols have the display name of Client for Microsoft Networks.
This requires a compound where-object statement and therefore I cannot use the simplified syntax.
Also, because only one of the protocols begins with Client - I can use that to shorten my query
just a bit. Here is the command I use (this is a one line command that I broke at the pipe character
to make a better display). Get-NetAdapter | Get-NetAdapterBinding | where {$_.enabled

-AND$_.displayname -match 'client'} The command and associated output appear in the figure
here.

Identifying network adapters 32

image023.png

Enabling and disabling network
adapters
One of the most fundamental things that I do with a network adapter is either enable or disable it. In
fact, I perform these tasks several times a week. This is because my primary work device is a laptop
and it has built-in wireless network adapters. Not surprising, all modern laptops have both wired
and wireless connections available. But when I am at home, in my office I want to have my laptop
use the gigabit Ethernet switch that I have, and not go through the significantly slower wireless
adapter. If I am on the road, I want to know if my wireless network adapter is enabled or not, and
I want to control whether it connects to say a network named Starbucks for example. If I do not
control such a thing, my laptop will automatically connect to every wireless it has ever seen before.
This is why, for example , I wrote this blog article about cleaning out wireless network history⁸.
Chris Wu, a Microsoft PFE also wrote an article that takes a different approach⁹. It is a good read as
well.

PowerTip : Enable all network adapters

Question: You are troubleshooting your Windows 8.1 laptop and want to quickly enable all network
adapters. How can you do this?

Answer: Use theGet-NetAdapter and the Enable-NetAdapter commands. The command line appears
here: Get-NetAdapter |Where status -ne up | Enable-NetAdapter ## Using Devcon

In the old days, back before Windows Vista and Windows Server 2008 when I needed to enable or
disable a network adapter, I would actually use Devcon¹⁰. Devcon is a command line utility that pro-
vides the ability to enable and to disable various hardware devices. It is billed as a command-line De-
vice Manager. Here is a VBScript I wrote to enable and to disable the network interface adapter using
Devcon. Keep in mind that Devcon is not installed by default, and therefore must be installed prior to
use. ““ ‘==
‘ ‘ VBScript: AUTHOR: Ed Wilson , MS, 5/5/2004 ‘ ‘ NAME: <turnONoffNet.vbs> ‘ ‘ COM-
MENT: Key concepts are listed below: ‘1.uses the c:\devcon utility to turn on or off net ‘2.uses
a vbyesNO msgBOX to solicit input ‘3. KB 311272 talks about devcon and shows where to get
‘==

Option Explicit

Dim objShell Dim objExec Dim onWireLess Dim onLoopBack Dim turnON Dim turnOFF Dim
yesNO Dim message, msgTitle Dim strText

⁸http://blogs.technet.com/b/heyscriptingguy/archive/2013/06/16/weekend-scripter-use-powershell-to-manage-auto-connect-wireless-
networks.aspx

⁹http://blogs.technet.com/b/heyscriptingguy/archive/2012/06/10/weekend-scripter-use-powershell-to-manage-windows-network-
locations.aspx

¹⁰http://support.microsoft.com/kb/311272

http://blogs.technet.com/b/heyscriptingguy/archive/2013/06/16/weekend-scripter-use-powershell-to-manage-auto-connect-wireless-networks.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/06/10/weekend-scripter-use-powershell-to-manage-windows-network-locations.aspx
http://support.microsoft.com/kb/311272
http://blogs.technet.com/b/heyscriptingguy/archive/2013/06/16/weekend-scripter-use-powershell-to-manage-auto-connect-wireless-networks.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2013/06/16/weekend-scripter-use-powershell-to-manage-auto-connect-wireless-networks.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/06/10/weekend-scripter-use-powershell-to-manage-windows-network-locations.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2012/06/10/weekend-scripter-use-powershell-to-manage-windows-network-locations.aspx
http://support.microsoft.com/kb/311272

Enabling and disabling network adapters 34

message = “Turn On Wireless? Loop is disabled” & vbcrlf & “if not, then wireless is disabled and
loop enabled”

msgTitle = “change Network settings” onWireLess = “ PCMCIADell-0156-0002” onLoopBack = “
*loop” turnON= “enable” turnOFF = “disable” Const yes = 6 Set objShell = CreateObject(“wscript.shell”)
yesNO = MsgBox(message,vbyesNO,msgTitle)

If yesNO = yes Then WScript.Echo “yes chosen” Set objExec = objShell.exec(“cmd /c c:\devcon “
& turnON & onWireLess) subOUT Set objExec = objShell.exec(“cmd /c c:\devcon “ & turnOFF &
onLoopBack) subOUT Else WScript.Echo “no chosen” Set objExec = objShell.exec(“cmd /c c:\devcon
“ & turnOFF & onWireLess) subOUT Set objExec = objShell.exec(“cmd /c c:\devcon “ & turnON &
onLoopBack) subOUT End If

Sub subOUTDo until objExec.StdOut.AtEndOfStream strText = objExec.StdOut.ReadLine()Wscript.Echo
strText Loop End sub ““ ## Using WMI

Beginning with Windows Vista (and Windows Server 2008) the Win32_NetworkAdapter class gains
two methods: disable and enable. These are documented on MSDN here¹¹. These methods are
instance methods which means that to use them, I need to first obtain an instance of the WMI
class. What does this mean? Well I am using Win32_NetworkAdapter and therefore I am working
with network adapters. So, I need to get a specific network adapter, and then I can disable it or enable
it. Here is how it might work: ““ $wmi=Get-WmiObject-ClassWin32_NetworkAdapter-filter”Name
LIKE ‘%Wireless%’”

$wmi.disable() OR $wmi=Get-WmiObject-ClassWin32_NetworkAdapter-filter”Name LIKE ‘%Wire-
less%’”

$wmi.enable() ““ The thing to keep in mind is that when calling a method in Windows PowerShell,
the parenthesis are required.

If I need to specify alternate credentials, I can specify a remote computer name and an account
that has local admin rights on the remote box. The code would appear like the following:
$wmi=Get-WmiObject-ClassWin32_NetworkAdapter-filter"Name LIKE '%Wireless%'"-credential

(Get-Credential) -computernameremotecomputer $wmi.disable() Keep in mind that WMI does
not permit alternate credentials for a local connection. Attempts to use alternate credentials for
a local connection results in the error appearing here: ““ PS C:> gwmi win32_networkadapter -
Credential (Get-Credential)

cmdlet Get-Credential at command pipeline position 1

Supply values for the following parameters:

Credential

gwmi : User credentials cannot be used for local connections At line:1 char: + gwmi win32_-
networkadapter -Credential (Get-Credential) + ∼∼ + CategoryInfo : InvalidOperation: (:) [Get-
WmiObject],ManagementException + FullyQualifiedErrorId : GetWMIManagementException,Microsoft.PowerShell.Comman

¹¹http://msdn.microsoft.com/en-us/library/aa394216%28v=vs.85%29.aspx

http://msdn.microsoft.com/en-us/library/aa394216(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa394216(v=vs.85).aspx

Enabling and disabling network adapters 35

ds.GetWmiObjectCommand ““ This error, for local connections, is not a Windows PowerShell thing,
WMI has always behaved in this manner, even going back to the VBScript days.

Using the NetAdapter module

In Windows 8 (and above), I can use Windows PowerShell to stop or to start a network adapter by
using one of the CIM commands. Of course, the function wraps the WMI class, but it also makes
things really easy. The _netadapter _functions appear here (gcm is an alias for the Get-Command
cmdlet) ““ PS C:> gcm -Noun netadapter | select name, modulename

Name ModuleName —- ———- Disable-NetAdapter NetAdapter Enable-NetAdapter NetAdapter
Get-NetAdapter NetAdapter Rename-NetAdapter NetAdapter Restart-NetAdapter NetAdapter Set-
NetAdapter NetAdapter ““ NOTE: To enable or to disable network adapters requires admin rights.
Therefore you must start the Windows PowerShell console with an account that has rights to
perform the task.

The various network adapters onmy laptop appear in the figure that follows.

I do not like having enabled, disconnected network adapters. Instead, I prefer to only enable the
network adapter I am using (there are a number of reasons for this such as simplified routing tables,
performance issues, and security concerns). In the past, I wrote a script, now I only need to use a
Windows PowerShell command. If I only want to disable the non-connected network adapters, the
command is easy. It appears here. Get-NetAdapter| ? status-ne up| Disable-NetAdapter The
problemwith the previous command is that it prompts. This is not much fun when there are multiple
network adapters to disable. The prompt appears here.

Enabling and disabling network adapters 36

image027.png

To suppress the prompt, I need to supply $false to the -confirm parameter. This appears here.
Get-NetAdapter| ? status-ne up | Disable-NetAdapter -Confirm:$false A quick check in con-

trol panel shows the disconnected adapters are nowdisabled. This appears here.

If I want to enable a specific network adapter, I use the Enable-Network adapter. I can specify
by name as appears here. Enable-NetAdapter -Name ethernet -Confirm:$false If I do not
want to type the adapter name, I can use the Get-NetAdapter cmdlet to retrieve a specific network
adapter and then enable it. This appears here. Get-NetAdapter -Name vethernet*| ? status

-eq disabled| Enable-NetAdapter -Confirm:$false It is also possible to use wild card characters
with the Get-NetAdapter to retrieve multiple adapters and pipeline them directly to the Disable-
NetAdapter cmdlet. The following permits the confirmation prompts so that I can selectively enable
or disable the adapter as I wish. ““ PS C:> Get-NetAdapter -Name vethernet* | Disable-NetAdapter

Enabling and disabling network adapters 37

Confirm

Are you sure you want to perform this action?

Disable-NetAdapter ‘vEthernet (InternalSwitch)’

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help

(default is “Y”):y

Confirm

Are you sure you want to perform this action?

Disable-NetAdapter ‘vEthernet (ExternalSwitch)’

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help

(default is “Y”):n ““

Renaming the network adapter
Depending on the version of your operating system, you will have different capabilities available for
renaming the network adapter. These methods involve using Netsh, WMI, and the functions from
the NetAdapter module.

PowerTip : Renaming the network adapter

Question: You want to rename you network adapter. How can you do this using Windows
PowerShell on Windows 8 or above?

Answer: Use the Get-Netadapter function to retrieve the specific network adapter and pipeline the
results to the Rename-NetAdapter function. This technique appears here: Get-NetAdapter -Name

Ethernet|Rename-NetAdapter -NewName MyRenamedAdapter ## Using NetSh

To rename the network adapter using NetSh I need to know the interface name, and the new name
I want to use. This is about it. To find the network adapter names, I can also use NetSh. Here is the
command: netsh interface ipv4 show interfaces NetSh is available everywhere right now. So,
I can use NetSh to configure network adapters from Windows 2000 forward - so it has the greatest
amount of backward compatibility. But it is deprecated, and therefore may not always be available
going forward. To rename a network interface using NetSh, I can use a command such as the one
appearing here: NetSh interface set interface name="Ethernet" newname="RenamedAdapter"

Using WMI

Beginning withWindows Vista, it is possible to useWMI to rename the network interface. The thing
to keep in mind, is that the property that I change is NetConnectionID and not the name property.
Because this command modified the NetConnectionID property, it is a simple property assignment,
and not a method call. The Win32_NetworkAdapter WMI class is documented on MSDN¹² and the
article shows the properties that are Read and Write. The steps to using WMI include the following:

1. Retrieve the specific instance of the network adapter
2. Assign a new value for the NetConnectionID property
3. Use the Put method to write the change back to WMI

The following code illustrates these three steps using a network adapter that is named Ethernet.
The command will rename the network adapter named Ethernet to RenamedConnection: ““
$wmi = Get-WmiObject -Class Win32_NetworkAdapter -Filter “NetConnectionID = ‘Ethernet’”
$wmi.NetConnectionID = ‘RenamedConnection’ $wmi.Put()

““ The following figure shows using WMI to rename the network adapter.

¹²http://msdn.microsoft.com/en-us/library/aa394216%28v=vs.85%29.aspx

http://msdn.microsoft.com/en-us/library/aa394216(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa394216(v=vs.85).aspx

Renaming the network adapter 39

image031.png

Using WMI on Windows 7 and above

On Windows 7 and Windows Server 2008 R2, it is not necessary to use the Get-WmiObject cmdlet,
assign new values for the property and call the Put method. This is because the Set-CimInstance
cmdlet permits accomplishing this feat as single command. The easiest way to use Set-CimInstance is
to use a query. Interestingly enough, this WQL query is the same type of query that would have been
used back in the VBScript days. The query to retrieve the network adapter named Ethernet appears
here: "Select * from Win32_NetworkAdapter where NetConnectionID = 'EtherNet'" To assign
a new value for a property, I use a hashtable. The hashtable specifies the property and the new value
for the property. The hashtable to specify a value of RenamedConnection for the NetConnectionID
property appears here: @{NetConnectionID="RenamedConnection"} The complete Set-CimInstance
command appears here (this is a single line command) Set-CimInstance-Query"Select * from

Win32_NetworkAdapter where NetConnectionID = 'EtherNet'"-Property @{NetConnectionID="RenamedConnection"}

When I run the command, nothing appears in the output. This following figure shows the single

Renaming the network adapter 40

command (wrapping in the Windows PowerShell console) and the fact that there is not output from
the command. On my Windows 8.1 laptop, I use the Get-NetAdapter command to verify that the
adapter renamed.

image033.png

Using the NetAdapter module

Renaming a network adapter via Windows PowerShell requires admin rights. Unfortunately, the
help does not mention this. You just have to sort of know this. Luckily, an error occurs when
attempting to run the command without admin rights. The error is instructive, and informs that
access is denied. The error appears here.

image035.png

The good thing is that the _access denied _error appears - some cmdlets do not display output, and
do not let you know that you need admin rights to obtain the information (The Get-VM cmdlet is
one of those. It returns no virtual machine information, but it does not generate an error either. This

Renaming the network adapter 41

situation is also true with the Start-VM cmdlet – does not do anything, but does not generate an
error if you do not have rights).

So I close the Windows PowerShell console, right click on the Windows PowerShell console icon I
created on my task bar, and run Windows PowerShell as Administrator. I now run the command to
rename my network adapter with the _whatif _parameter to ensure it accomplishes what I want.
Here is the command I use: ““ Get-NetAdapter -Name Ethernet | Rename-NetAdapter -NewName
Renamed -whatif

What if: Rename-NetAdapter -Name ‘Ethernet’ -NewName ‘Renamed’ That is exactly what I

want to happen. I now use the up arrow, and remove the _whatif. _Here is the command

(no output returns from this command). Get-NetAdapter -Name Ethernet | Rename-NetAdapter
-NewName Renamed ““ The command, and associated output appear in the figure here.

image037.png

I can modify my command just a bit, and return an instance of the renamed network adapter. To
do this, I use the -passthru parameter from the Rename-NetAdapter function. One reason to do this
is to see visual confirmation that the command completed successfully. Other reasons, would be to
use the returned object to feed into other cmdlets and to perform other actions. Here is the revised
command, showing how to use -passthru Get-NetAdapter -Name Ethernet | Rename-NetAdapter

-NewName Renamed â€“PassThru The command, and associated output appear in the figure that
follows.

image039.png

One of the really powerful things about the Get-NetAdapter function is that I can use wildcard

Renaming the network adapter 42

characters for the name parameter. This means that if I do not want to type the entire network
adapter name, I can shorten it. It also means that if I have a similar naming pattern, I can use a
wildcard pattern to retrieve them as well. Here is an example of using a wildcard. Get-NetAdapter

-NameEther* This command works the same as the other commands, and therefore I can pipeline
the results to the Rename-NetAdapter function. This technique appears here: Get-NetAdapter -Name

Ether* | Rename-NetAdapter -NewName Renamed -PassThru As seen in the figure here, the
command works perfectly.

image041.png

Finding connected network adapters
One of the most fundamental pieces of troubleshooting or security checks to do is to find out which
of the many network adapters on a computer are actually connected to a network.

PowerTip : Show ‘up’ physical adapters

Question: You want to see which physical network adapters on your Windows 8.1 computer using
Windows PowerShell. How can you do this?

Answer: Use the -physical parameter with the Get-NetAdapter function and filter for a status of
up. This technique appears here: Get-NetAdapter -physical| where status -eq 'up' ## Using
NetSh

It is pretty easy to use NetSh to retrieve information about the connection status of network adapters.
To do so, I use the following command: netsh interface ipv4 show interfaces One of the
problems, from a management perspective, is that the command returns text. Therefore, if I need to
parse the text to pull out specific information, such as the Interface Index number, or the Name of
the adapter, then I am going to have to resort to writing a complicated regular expression pattern.
If all I need to do is to obtain the information because I am writing to a log file as text, then the
command works great, and is the lowest common denominator - I can use it all the way back to
Windows 2000 days.

I can even run the netsh commands from within the Windows PowerShell console. This appears in
the figure that follows.

image043.png

Using WMI

It is possible to use WMI and the Win32_NetworkAdapter WMI class to retrieve information about
the connection status. The NetConnectionStatus property reports backed in a coded value that

Finding connected network adapters 44

reports the status. These values are documented on MSDN for the Win32_NetworkAdapter class¹³.
Using the Get-WmiObject Windows PowerShell cmdlet, I can work with any operating system that
installs Windows PowerShell. This includes Windows XP, Windows Server 2003 and above. The
following command returns information similar to the NetSh command. get-wmiobject win32_-

networkadapter|select netconnectionid, name, InterfaceIndex, netconnectionstatus The
command and the output from the command appear in the figure that follows. ![image045.png](images/image045.png)
The difference is that instead of plain text, the command returns objects that can be further
manipulated. Therefore, while the above command actually returns the network connection status
of all network adapters, the NetSh command only returns the ones that are connected. If I filter on a
netconnectionstatus of 2 I can return only the connected network adapters. The command becomes
this one (this is a single line command that I broke at the pipeline character for readability): ““
get-wmiobject win32_networkadapter -filter “netconnectionstatus = 2”|

selectnetconnectionid,name,InterfaceIndex,netconnectionstatus ““ The command and output appear
in the figure that follows.

image047.png

If the desire is to obtain the connection status of more than just network adapters that are connected,
then the task will require writing a script to do a lookup. The lookup values appear in the table that
follows:

Value Meaning

0 Disconnected
1 Connecting
2 Connected
3 Disconnecting
4 Hardware not present
5 Hardware disabled
6 Hardware malfunction
7 Media disconnected
8 Authenticating
9 Authentication succeeded
10 Authentication failed

¹³http://msdn.microsoft.com/en-us/library/aa394216%28v=vs.85%29.aspx

http://msdn.microsoft.com/en-us/library/aa394216(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa394216(v=vs.85).aspx

Finding connected network adapters 45

Value Meaning

11 Invalid Address
12 Credentials required

The Get-NetworkAdapterStatus.ps1 script requires at least Windows PowerShell 2.0 which means
that it will run on Windows XP SP3 and above.

Get-NetworkAdapterStatus.Ps1 ““ <#

.Synopsis Produces a listing of network adapters and status on a local or remote machine.

.Description This script produces a listing of network adapters and status on a local or remote
machine.

.Example Get-NetworkAdapterStatus.ps1 -computer MunichServer Lists all the network adapters
and status on a computer named MunichServer

.Example Get-NetworkAdapterStatus.ps1 Lists all the network adapters and status on local computer

.Inputs [string]

.OutPuts [string]

.Notes NAME: Get-NetworkAdapterStatus.ps1

AUTHOR: Ed Wilson

LASTEDIT: 1/10/2014

KEYWORDS: Hardware, Network Adapter

.Link

Http://www.ScriptingGuys.com

Requires -Version 2.0

>
Param([string]$computer=$env:COMPUTERNAME) #end param

functionGet-StatusFromValue { Param($SV) switch($SV) { 0 { “ Disconnected” } 1 { “ Connecting” }
2 { “ Connected” } 3 { “ Disconnecting” } 4 { “ Hardware not present” } 5 { “ Hardware disabled” } 6
{ “ Hardware malfunction” } 7 { “ Media disconnected” } 8 { “ Authenticating” } 9 { “ Authentication
succeeded” } 10 { “ Authentication failed” } 11 { “ Invalid Address” } 12 { “ Credentials Required” }
Default { “Not connected” } }

} #end Get-StatusFromValue function

*** Entry point to script ***
Get-WmiObject-Classwin32_networkadapter-computer$computer| Select-ObjectName,@{LABEL=”Status”;

EXPRESSION={Get-StatusFromValue$_.NetConnectionStatus}} If my environment is Windows 7

and Windows Server 2008 R2, I can use either Windows PowerShell 3.0 or Windows PowerShell

4.0. The advantage here, is that I gain access to the Get-CimInstance cmdlet which uses

WinRM for remoting instead of DCOM that the Get-WmiObject cmdlet uses. The only change to

the Get-NetworkAdapterStatus.ps1 script that is required is to replace the Get-WmiObject

line with Get-CimInstance. The revision appears here: # *** Entry point to script ***

Get-CimInstance-Classwin32_networkadapter-computer$computer| Select-ObjectName,@{LABEL=”Status”;

EXPRESSION={Get-StatusFromValue$_.NetConnectionStatus}} ““When I run theGet-StatusFromValue.ps1
script, in the Windows PowerShell ISE, I see the output achieved here.

*** Entry point to script *** 49

image049.png

Using the NetAdapter module

OnWindows 8 and above the NetAdapter module contains the Get-NetAdapter function. To see the
status of all network adapters, use the Get-NetAdapter function with no parameters. The command
appears here: Get-NetAdapter The output from this command appears here.

*** Entry point to script *** 50

image051.png

I can reduce the output to only physical adapters by using the -physical parameter. This command
appears here. Get-NetAdapter-Physical If I only want to see the physical network adapters
that are actually up, I pipeline the results to the where-object. This command appears here.
Get-NetAdapter-physical|wherestatus-eq'up' The commands and the output from the two
previous commands appear in the figure that follows.

image053.png

Network Adapter power settings
Beginning with Windows 7, the network adapter power settings expanded¹⁴. Some of the improve-
ments are listed here:

• Wake on LAN and Wake on Wireless LAN. Improved wake patterns reduce the number of
false wakes. Beginning with Windows 7 a directed packet (such as a ping) does not cause the
computer to wake up.

• ARP (Address Resolution Protocol) and NS (Neighbor Solicitation) offload. ARP andNS packets
do not wake up the computer. Instead the network adapter, beginning with Windows 7, can
respond. Therefore the computer does not need to wake up just to maintain a presence on the
network. This support depends on at least NDIS 6.0 drivers and may not be available with older
hardware.

• Low Power on Media Disconnect. Enables the computer to place the network adapter into a
low power state when the network cable is unplugged and the computer is running.

These settings are configurable via the graphical user interface by selecting the configure button
from the network adapter properties dialog box. The settings appear in the figure that follows.

¹⁴http://technet.microsoft.com/en-us/library/ee617165(v=WS.10).aspx

http://technet.microsoft.com/en-us/library/ee617165(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/ee617165(v=WS.10).aspx

Network Adapter power settings 52

image055.png

PowerTip : Get network adapter power management settings

Question: You want to get the network adapter power management settings on your Window 8.1
computer. How can you use Windows PowerShell to do this?

Answer: Use the Get-NetAdapterPowerManagement function and specify the name of the network
adapter to query. Get-NetAdapterPowerManagement-Name ethernet

Using NetSh

Some of the network adapter power management settings are configurable via NetSh. For example,
to permit ARP packets and NS packets to wake the network adapter, I would use a command such as
the following: netsh interface ipv4 set interface 12 forcearpndwolpattern=enabled When
the command completes successfully, it returns OK. Keep in mind, this will also cause a network
adapter reset. The command and associated output appear here:

Network Adapter power settings 53

image057.png

Using the NetAdapter module

To query the powermanagement settings for a specific network adapter, use theGet-NetAdapterPowerManagement
function and specify the name of the network adapter. An example of the command appears here:
Get-NetAdapterPowerManagement -Name ethernet The command, and the output associated with
the command appear in the figure that follows.

image059.png

The Get-NetAdapterPowerManagement function only permits the use of the adapter name or
interface description as parameters. But the Get-NetAdapter function is much more flexible. I often
use Get-NetAdapter to retrieve a specific network adapter and then pipeline it to other functions such
as Get-NetAdapterPowerManagement. This technique appears here: Get-NetAdapter -Interface

Index4 | Get-NetAdapterPowerManagement To configure the network adapter power management,
I use the Set-NetAdapterPowerManagement function. Once again, I want to retrieve my network
adapter by interface index number instead of having to type the name or description of the
adapter. I pipeline the resulting network adapter object to the Set-NetAdapterPowerManagement
function and specify a value for the -WakeOnMagicPacket parameter. The command appears here.
Get-NetAdapter -Interface Index4 | Set-NetAdapterPowerManagement -WakeOnMagicPacket

Enabled Because no output returns from the command, I use the Get-NetAdapter command a

Network Adapter power settings 54

second time to verify the configuration change took place. The commands and associated output
appear in the figure that follows.

image061.png

Now, it so happens that I know what the permissible values are for the parameters. But if I did not
know this, I could create the command in theWindows PowerShell ISE and rely upon the intellisense
features. When I type a parameter name, the permissible values appear and make it possible to select
the correct value from the list. This appears in the figure that follows.

image063.png

Most of the times, when I need to manage network adapter power management settings, it is
because of a new deployment, or because an audit has determined that I have configuration
drift. (Hmmm - this would actually be a great thing to use Desired Configuration Management
to control.) So, what I do is put all the settings I want to configure into a single command.
Such a command appears here: ““ Set-NetAdapterPowerManagement -Name ethernet -ArpOffload
Enabled -DeviceSleep OnDisconnect Disabled -NSOffload Enabled -WakeOnMagicPacket Enabled

Network Adapter power settings 55

-WakeOnPattern Enabled -PassThru

““ The -passthru parameter outputs a configuration management object so that I can inspect it and
ensure that the proper things change that I wanted changed. The command, and the output from
the command appear in the figure that follows:

image065.png

To make changes to multiple computers, I first use the New-CimSession cmdlet to make my remote
connections. I can specify the computer names and the credentials to use to make the connection.
I then store the remote connection in a variable. Next, I pass that cimsession to the -cimsession
parameter. The key to remember here, is that I must be able to identify the network adapter
that I need to use for the management activity. An example of creating a Cim Session and using
it appears here (keep in mind this is a two line command. If you directly copy and paste this
command you must change the computer name, network interface name, and remove spaces until
the second command appears on a single line). $session = New-CimSession -ComputerName

edlt Set-NetAdapterPowerManagement -CimSession $session -name ethernet -ArpOffload

Enabled -DeviceSleepOnDisconnect Disabled -NSOffload Enabled -WakeOnMagicPacket Enabled

-WakeOnPattern Enabled -PassThru The command and the output from the command appear in
the figure that follows.

Network Adapter power settings 56

image067.png

Keep in mind that these commands require that either the Windows PowerShell console or the
Windows PowerShell ISE is opened with admin rights. To do this, right click on the Windows
PowerShell console icon or Windows PowerShell ISE icon while holding down the shift key and
select run as administrator. Or if you launch it via Windows Search on Windows 8.1 type Windows
PowerShell from the Start page, and the Search dialog appears with the Windows PowerShell icon.
Right click on the icon and select Run as Administrator from the action menu.

If you do not launch Windows PowerShell with admin rights, an error occurs stating that it cannot
find the network adapter. An example of the error appears in the figure that follows.

image069.png

Getting Network Statistics
One of the cool things about the Windows platform are all the different ways of obtaining
networking statistical information. There are things like NetStat, NetSh, performance counters, as
well as the Get-NetworkStatistics function from the NetAdapter Windows PowerShell module. All
of these methods can be used inside the Windows PowerShell console, or from within the Windows
PowerShell ISE.

PowerTip : Use PowerShell to find Networking counters

Question: You need to check on the network performance, but do not know where to begin. How
can you use Windows PowerShell to find networking counters?

Answer: Use the Get-Counter cmdlet and the -ListSet parameter. Select the CounterSetName
property and filter on names related to networking. The following command returns sets related
to IPV6. Get-Counter -ListSet * | select countersetname | where countersetname -match

'ipv6' ## NetSh

Using NetSh to obtain network statistics is easy and powerful. For example to show IP statistics, I
use the command appearing here. netsh interface ipv4 show ipstats A sample output from
this command appears in the figure that follows.

Getting Network Statistics 58

image071.png

To show TCP statistics using NetSh, I use the command appearing here. netsh interface ipv4

show tcpstats The command, and the output from the command appear in the figure that follows.

Getting Network Statistics 59

image073.png

One of the cool things about using NetSh from within Windows PowerShell is that I have the power
of Windows PowerShell at my fingertips. Rather than keep going back and forth to find stuff, I can
pipeline the results from a command to the Select-String cmdlet. For example, if I am interested in
how many commands are available to show statistics, I use the command appearing here because
I noticed that each of the commands contains the letters stats: netsh interface ipv4 show |

Select-String "stats" The output from the command appears here: ““ PS C:> netsh interface
ipv4 show | Select-String “stats”

show icmpstats - Displays ICMP statistics.

show ipstats - Displays IP statistics.

show tcpstats - Displays TCP statistics.

show udpstats - Displays UDP statistics. In addition to the IPV4 interface, I can also work

with the IPV6 interface and obtain similar statistics. Here is the command I used to

obtain that information: PS C:> netsh interface ipv6 show | Select-String “stats”

show ipstats - Displays IP statistics.

show tcpstats - Displays TCP statistics.

show udpstats - Displays UDP statistics. In addition to using the Select-String cmdlet

to parse the output from the NetSh help, I can also use it to hone in on specific

information from the statistics. For example, the following command retrieves IPv6

interface IP stats. netsh interface ipv6 show ipstats I can hone in on the output and look

Getting Network Statistics 60

for errors by piplining the results to the Select-String cmdlet and choosing error. This

command appears here. netsh interface ipv6 show ipstats | Select-String errors ““ In the figure that
follows, I first show the command to retrieve the IPV6 IP statistics. Next I show the output from the
command. Then I filter the output to only errors by using the Select-String cmdlet and lastly, I show
the output from the filtered string.

image075.png

NetStat

The NetStat command has been around in the Windows world for a long time. It provides a quick
snapshot of connections from local ports to remote ports as well as the protocol and the state of those
connections. It takes a couple of minutes to run, and as a result it makes sense to store the results of
NetStat into a variable. I can then examine the information several times if I wish without having to
wait each time to gather the information additional times. Here is an example of running the NetStat
command and storing the results from in a variable. $net=NetStat To display the information in
an unfiltered fashion, I just type $net at the Windows PowerShell prompt and it displays all of the
information that it gathered. Here is an example: $net The command to run NetStat and store the
results in a variable as well as to examine the contents of the $net variable appear in the figure that
follows.

Getting Network Statistics 61

image077.png

The real power, however, comes in using Windows PowerShell to parse the text output to find
specific information. For example, the previous output shows multiple connections in various states
of connectiveness. I can easily parse the output and find only the connections that are Established.
The command I use appears here. $net|select-string "Established" The command and the
output from the command appear in the figure that follows.

Getting Network Statistics 62

image079.png

Interestingly enough, I can also use NetSh to report on TCP connections. The command appears
here: netsh interface ipv4 show tcpconnections The output from the command, as appears in
the figure that follows, is a bit different than that received from NetStat.

Getting Network Statistics 63

image081.png

Performance Counters

To collect performance counter information, I need to know the performance counter set names so
I can easily gather the information. To do this, I use the Get-Counter cmdlet and I choose all of
the listsets. I then like to sort on the countersetName property and then select only that property.
The following command retrieves the available listsets. ““ Get-Counter -ListSet * | Sort-Object
CounterSetName | Select-Object CounterSetName

If I pipeline the output to the Out-GridView cmdlet, then I can easily filter the list

to find the listsets I wish to use. This command appears here. Get-Counter -ListSet * |
Sort-Object CounterSetName | Select-Object CounterSetName | Out-GridView

““ The resulting Out-GridView pane makes it easy to filter for different values. For example, the
figure that follows filters for IP.

Getting Network Statistics 64

image083.png

Once I have the countersetname value I wish to query, it is a simplematter of plugging it into the Get-
Counter to first obtain the paths. This command appears here. $paths = (Get-Counter -ListSet

ipv4).paths Next I use the paths with the Get-Counter cmdlet to retrieve a single instance of the
IPv4 performance information. The command appears here. Get-Counter -Counter $paths The
commands and the output from the commands appear in the figure that follows.

Getting Network Statistics 65

image085.png

If I want to monitor a counter set for a period of time, I use the -SampleInterval property and the
-MaxSamples parameter. In this way I can specify how long I want the counter collection to run.
An example of this technique appears here. Get-Counter -Counter $paths -SampleInterval 60

-MaxSamples 60 If I want to monitor continuously, until I type Ctrl-C and break the command, I
use the -Continuous parameter and the -SampleInterval parameter. An example of this command
appears here. Get-Counter -Counter $paths -SampleInterval 30 -Continuous ## Using Get-
NetAdapterStatistics function

The easiest way to gather network adapter statistics is to use the Get-NetAdapterStatistics function
from the NetAdapter module. It provides a quick overview of the sent and received packets. An
example of the command appears here. Get-NetAdapterStatistics The command and a sample
output appear in the figure that follows.

Getting Network Statistics 66

image087.png

If I want to work with a specific network adapter I can use the name of the adapter, or for more
flexibility I can pipeline the results from the Get-Netadapter function. This technique appears here.
Get-NetAdapter -ifIndex 12| Get-NetAdapterStatistics The Get-NetAdapterStatistics function
returns more than just bytes sent and received. To find the additional information I like to pipeline
the results to the Format-List cmdlet. An example of this technique appears here. Get-NetAdapter

-ifIndex 12| Get-NetAdapterStatistics | format-list* The command, and the output
associated with the command appear in the figure that follows.

Getting Network Statistics 67

image089.png

Resources
Books from Microsoft Press

Windows PowerShell 3.0 First Steps¹⁵ - AWindows PowerShell primer providing an overview of the
major Windows PowerShell components.

Windows PowerShell 3.0 Step by Step¹⁶ - A Windows PowerShell step by step learning guide,
complete with lab exercises, review questions, and answers. This book contains hundreds of
Windows PowerShell scripts.

Windows PowerShell Best Practices¹⁷ - The Windows PowerShell best practices guide, containing
real world tips, gotchas, and techniques from hundreds of field personnel. The contributors include
Microsoft Windows PowerShell developers, Microsoft Windows PowerShell MVP’s, Enterprise
network administrators, and top Dev-ops.

Web Resources

The Microsoft Script Center¹⁸ - dedicated to system administrator scripters the world over.

The Scripting Guys Forum¹⁹ - community forum for asking scripting questions.

The Script Center Script Repository²⁰ - the largest collection of admin scripts on the internet.

The Hey Scripting Guy Blog²¹ - thousands of blog articles about scripting. Updated twice a day, 365
days a year, it is the #1 blog on MSDN and on TechNet.

The Script Center Community Page²² - insight into Windows PowerShell community activities,
especially activities where the Microsoft Scripting Guy and the Scripting Wife will appear.

The Script Center Learn PowerShell Page²³ - central hub for learning about Windows PowerShell.

NetAdapter module documentation²⁴ - official Microsoft documentation for the NetAdapter module
from TechNet.

PoshCode²⁵ - Windows PowerShell community driven script repository.
¹⁵http://www.amazon.com/Windows-PowerShell-3-0-First-Steps/dp/0735681007/ref=sr_1_3?s=books&ie=UTF8&qid=1389394686&sr=1-

3&keywords=ed+wilson
¹⁶http://www.amazon.com/Windows-PowerShell-3-0-Step/dp/0735663394/ref=sr_1_1?s=books&ie=UTF8&qid=1389394766&sr=1-

1&keywords=ed+wilson
¹⁷http://www.amazon.com/Windows-PowerShell-Best-Practices-Wilson/dp/0735666490/ref=sr_1_2?s=books&ie=UTF8&qid=

1389394813&sr=1-2&keywords=powershell+best+practices
¹⁸http://technet.microsoft.com/en-us/scriptcenter
¹⁹http://social.technet.microsoft.com/Forums/en/category/scripting
²⁰http://gallery.technet.microsoft.com/scriptcenter
²¹http://blogs.technet.com/b/heyscriptingguy/
²²http://technet.microsoft.com/en-us/scriptcenter/hh182567.aspx
²³http://technet.microsoft.com/en-us/scriptcenter/dd742419.aspx
²⁴http://technet.microsoft.com/en-us/library/jj134956.aspx
²⁵http://poshcode.org/

http://www.amazon.com/Windows-PowerShell-3-0-First-Steps/dp/0735681007/ref=sr_1_3?s=books&ie=UTF8&qid=1389394686&sr=1-3&keywords=ed+wilson
http://www.amazon.com/Windows-PowerShell-3-0-Step/dp/0735663394/ref=sr_1_1?s=books&ie=UTF8&qid=1389394766&sr=1-1&keywords=ed+wilson
http://www.amazon.com/Windows-PowerShell-Best-Practices-Wilson/dp/0735666490/ref=sr_1_2?s=books&ie=UTF8&qid=1389394813&sr=1-2&keywords=powershell+best+practices
http://technet.microsoft.com/en-us/scriptcenter
http://social.technet.microsoft.com/Forums/en/category/scripting
http://gallery.technet.microsoft.com/scriptcenter
http://blogs.technet.com/b/heyscriptingguy/
http://technet.microsoft.com/en-us/scriptcenter/hh182567.aspx
http://technet.microsoft.com/en-us/scriptcenter/dd742419.aspx
http://technet.microsoft.com/en-us/library/jj134956.aspx
http://poshcode.org/
http://www.amazon.com/Windows-PowerShell-3-0-First-Steps/dp/0735681007/ref=sr_1_3?s=books&ie=UTF8&qid=1389394686&sr=1-3&keywords=ed+wilson
http://www.amazon.com/Windows-PowerShell-3-0-First-Steps/dp/0735681007/ref=sr_1_3?s=books&ie=UTF8&qid=1389394686&sr=1-3&keywords=ed+wilson
http://www.amazon.com/Windows-PowerShell-3-0-Step/dp/0735663394/ref=sr_1_1?s=books&ie=UTF8&qid=1389394766&sr=1-1&keywords=ed+wilson
http://www.amazon.com/Windows-PowerShell-3-0-Step/dp/0735663394/ref=sr_1_1?s=books&ie=UTF8&qid=1389394766&sr=1-1&keywords=ed+wilson
http://www.amazon.com/Windows-PowerShell-Best-Practices-Wilson/dp/0735666490/ref=sr_1_2?s=books&ie=UTF8&qid=1389394813&sr=1-2&keywords=powershell+best+practices
http://www.amazon.com/Windows-PowerShell-Best-Practices-Wilson/dp/0735666490/ref=sr_1_2?s=books&ie=UTF8&qid=1389394813&sr=1-2&keywords=powershell+best+practices
http://technet.microsoft.com/en-us/scriptcenter
http://social.technet.microsoft.com/Forums/en/category/scripting
http://gallery.technet.microsoft.com/scriptcenter
http://blogs.technet.com/b/heyscriptingguy/
http://technet.microsoft.com/en-us/scriptcenter/hh182567.aspx
http://technet.microsoft.com/en-us/scriptcenter/dd742419.aspx
http://technet.microsoft.com/en-us/library/jj134956.aspx
http://poshcode.org/

Resources 69

PowerShell.Org²⁶ - Windows PowerShell community site containing blogs, forums, user group
information and a script repository.

PowerShellGrroup.org²⁷ - listing of Windows PowerShell community user group meetings.

PowerShellSaturday.Org²⁸ - listing of Windows PowerShell Saturday community events.

²⁶http://powershell.org/wp/
²⁷http://powershellgroup.org/
²⁸http://powershellsaturday.com/welcome/

http://powershell.org/wp/
http://powershellgroup.org/
http://powershellsaturday.com/welcome/
http://powershell.org/wp/
http://powershellgroup.org/
http://powershellsaturday.com/welcome/

	Table of Contents
	PowerShell Networking Guide
	Windows PowerShell Basics - Introduction
	So what are the basics of Windows PowerShell that I need to know?
	Working with Windows PowerShell

	Windows PowerShell Basics - Security issues with Windows PowerShell
	Running as a normal (non-elevated) user
	Launching PowerShell with Admin rights

	Windows PowerShell Basics - Using PowerShell cmdlets
	Windows PowerShell Basics - Supplying options for cmdlets
	Using single parameters

	Windows PowerShell Basics - Using command line utilities
	Windows PowerShell Basics - Working with help options
	Windows PowerShell Basics - Working with modules
	Working with Network adapters
	Identifying network adapters
	Using raw WMI to identify network adapters
	Using NetSh
	Using PowerShell on Windows 8 or above

	Enabling and disabling network adapters
	Using the NetAdapter module

	Renaming the network adapter
	Using WMI on Windows 7 and above
	Using the NetAdapter module

	Finding connected network adapters
	Using WMI

	Requires -Version 2.0
	>
	*** Entry point to script ***
	Using the NetAdapter module

	Network Adapter power settings
	Using NetSh
	Using the NetAdapter module

	Getting Network Statistics
	NetStat
	Performance Counters

	Resources
	Web Resources

