	Both	RX	TX			Both	RX	TX
	κχ & ιχ "Α"	"B"	"C"	_		κχ & ιχ "Α"	"B"	"C"
Ch. 1 (26.965)	19.005	7.505	7.960		Ch.13 (27.115)	19.155	7.505	7.960
Ch. 2 (26.975)	"	7.515	7.970		Ch.14 (27.125)	-	7.515	7.970
Ch. 3 (26.985)	"	7.525	7.980		Ch.15 (27.135)	"	7.525	7.980
Ch. 4 (27.005)	"	7.545	8.000		Ch.16 (27.155)	"	7.545	8.000
				-				
Ch. 5 (27.015)	19.055	7.505	7.960		Ch.17 (27.165)	19.205	7.505	7.960
Ch. 6 (27.025)	"	7.515	7.970		Ch.18 (27.175)	=	7.515	7.970
Ch. 7 (27.035)	"	7.525	7.980		Ch.19 (27.185)	"	7.525	7.980
Ch. 8 (27.055)	"	7.545	8.000		Ch.20 (27.205)	"	7.545	8.000
				_				
Ch. 9 (27.065)	19.105	7.505	7.960		Ch.21 (27.215)	19.255	7.505	7.960
Ch.10 (27.075)	"	7.515	7.970		Ch.22 (27.225)	"	7.515	7.970
Ch.11 (27.085)	"	7.525	7.980		Ch.23 (27.255)	"	7.545	8.000
Ch.12 (27.105)	"	7.545	8.000					

Synthesis: "A" + "C" = direct TX carrier frequency;

"A" + "B" = RX frequency (offset lower by 455 KHz)

Example: For Ch.1, [19.005 MHz + 7.960 MHz] = 26.965 MHz, the on-channel TX frequency. During RX, the 7.505 MHz crystal is used, which is exactly 455 KHz lower than 7.960 MHz. This produces the second IF for the receiver. This particular scheme has no fixed high IF, since it must pass a 40 KHz *band* of frequencies. Therefore no sharp <u>single</u>-frequency I.F. filter is possible at the high I.F. and receiver selectivity is not as good as in other mixing methods that use fixed frequencies at both I.F. stages.